Hybrid All-Pay and Winner-Pay Contests
Seminar at DICE in Düsseldorf, June 5, 2018

Johan N. M. Lagerlöf
Dept. of Economics, U. of Copenhagen
Email: johan.lagerlof@econ.ku.dk
Website: www.johanlagerlof.com

June 2, 2018
A **hybrid contest**:
- In some economic, social, or political situation, each one of a number of economic agents try to win an indivisible prize.
- To increase her probability of winning, each contestant makes both **all-pay investments** and **winner-pay investments**.

Example: The competitive bidding to host the Olympic games.
- **All-pay investments**: Candidate cities spend money upfront, with the goal of persuading members of the IOC.
- **Winner-pay investments**: A city commits to build new stadia and invest in safety arrangements if being awarded the Games.

To fix ideas, consider the following formalization:
- Contestant i chooses $x_i \geq 0$ and $y_i \geq 0$ to maximize

 $$\pi_i = (v_i - y_i) p_i (s_1, s_2, \ldots, s_n) - x_i,$$

 subject to $s_i = f(x_i, y_i)$.

A hybrid contest:

- In some economic, social, or political situation, each one of a number of economic agents try to win an indivisible prize.
- To increase her probability of winning, each contestant makes both all-pay investments and winner-pay investments.

Example: The competitive bidding to host the Olympic games.

- All-pay investments: Candidate cities spend money upfront, with the goal of persuading members of the IOC.
- Winner-pay investments: A city commits to build new stadia and invest in safety arrangements if being awarded the Games.

To fix ideas, consider the following formalization:

- Contestant i chooses $x_i \geq 0$ and $y_i \geq 0$ to maximize

$$
\pi_i = (v_i - y_i) p_i (s_1, s_2, \ldots, s_n) - x_i,
$$

subject to $s_i = f(x_i, y_i)$.
Introduction: What is a hybrid contest? (1/2)

- **A hybrid contest:**
 - In some economic, social, or political situation, each one of a number of economic agents try to win an indivisible prize.
 - To increase her probability of winning, each contestant makes both **all-pay investments** and **winner-pay investments**.
- **Example:** The competitive bidding to host the Olympic games.
 - **All-pay investments:** Candidate cities spend money upfront, with the goal of persuading members of the IOC.
 - **Winner-pay investments:** A city commits to build new stadia and invest in safety arrangements if being awarded the Games.
- To fix ideas, consider the following formalization:
 - Contestant i chooses $x_i \geq 0$ and $y_i \geq 0$ to maximize
 $$
 \pi_i = (v_i - y_i) p_i (s_1, s_2, \ldots s_n) - x_i,
 $$
 subject to $s_i = f(x_i, y_i)$.

J. Lagerlöf (U of Copenhagen)
Competition for a government contract or grant:
- **All-pay investments**: Time/effort spent on preparing proposal.
- **Winner-pay investments**: Commit to ambitious customer service.

A political election:
- **All-pay investments**: Campaign expenditures.
- **Winner-pay investments**: Electoral promises (costly if they deviate from the politician’s own ideal policy).

Rent seeking to win monopoly rights of a regulated market:
- **All-pay investments**: Ex ante bribes (how Tullock modeled it).
- **Winner-pay investments**: Conditional bribes.

Tullock’s motivation:
- Empirical studies in the 1950s: DWL appears to be tiny.
- Tullock: Maybe a part of profits adds to the cost of monopoly.
Two earlier papers that model a hybrid contest:

- **Haan and Schonbeek (2003).**
 - They assume Cobb-Douglas—which here is quite restrictive.

- **Melkoyan (2013).**
 - CES but with $\sigma \geq 1$. Symmetric model. Hard to check SOC.
 - My analysis: (i) other approach which yields easy-to-check existence condition; (ii) assumes general production function and CSF; (iii) studies both symmetric and asymmetric models.

Other contest models with more than one influence channel:

- **Multiple all-pay “arms”** (maybe with different costs): Arbatskaya and Mialon (2010).
Literature Review (1/2)

- Two earlier papers that model a hybrid contest:
 - **Haan and Schonbeek (2003).**
 - They assume Cobb-Douglas—which here is quite restrictive.
 - **Melkoyan (2013).**
 - CES but with $\sigma \geq 1$. Symmetric model. Hard to check SOC.
 - My analysis: (i) other approach which yields easy-to-check existence condition; (ii) assumes general production function and CSF; (iii) studies both symmetric and asymmetric models.

- Other contest models with more than one influence channel:
 - **Multiple all-pay “arms”** (maybe with different costs): Arbatskaya and Mialon (2010).
Multidimensional (procurement) auctions:

- **Che (2003), Branck (1997), Asker and Cantillon (2008).**
 - Firms bid on both price and (many dimensions of) quality.
 - The components of each bid jointly determine a score.
 - Auctioneer chooses bidder with highest score.
- **Differences:**
 - In their models, not both all-pay and winner-pay ingredients.
 - Not a probabilistic CSF.

Optimal design of a research contest: **Che and Gale (2003).**

- A principal wants to procure an innovation.
- Firms choose both quality of innovation and the prize if winning.
- Thus, effectively, both all-pay and winner-pay ingredients.
- Differences: Not a probabilistic CSF (so mixed strategy eq.), linear production function, mechanism design approach.
Multidimensional (procurement) auctions:

- **Che (2003), Branck (1997), Asker and Cantillon (2008).**
 - Firms bid on both price and (many dimensions of) quality.
 - The components of each bid jointly determine a score.
 - Auctioneer chooses bidder with highest score.

- **Differences:**
 - In their models, not both all-pay and winner-pay ingredients.
 - Not a probabilistic CSF.

Optimal design of a research contest: **Che and Gale (2003).**

- A principal wants to procure an innovation.
- Firms choose both quality of innovation and the prize if winning.
- Thus, effectively, both all-pay and winner-pay ingredients.
- Differences: Not a probabilistic CSF (so mixed strategy eq.), linear production function, mechanism design approach.
A model of a hybrid contest (1/2)

- $n \geq 2$ contestants try to win an indivisible prize.
- Contestant i chooses $x_i \geq 0$ and $y_i \geq 0$ to maximize the following expected payoff:

$$\pi_i = (v_i - y_i) p_i(s) - x_i, \quad \text{subject to } s_i = f(x_i, y_i),$$

where $s = (s_1, s_2, \ldots, s_n)$ and $s_i \geq 0$ is contestant i’s score.

- $v_i > 0$ is i’s valuation of the prize.
- $p_i(s)$ is i’s prob. of winning (or contest success function, CSF).
- x_i is the all-pay investment: paid whether i wins or not.
- y_i is the winner-pay investment: paid i.f.f. i wins.

- It is a one-shot game where the contestants choose their investments (x_i, y_i) simultaneously with each other.
Assumptions about $p_i(s)$:
- Twice continuously differentiable in its arguments.
- Strictly increasing and strictly concave in s_i.
- Strictly decreasing in s_j for all $j \neq i$.
- The contest is won by someone: $\sum_{j=1}^{n} p_j(s) = 1$.
- Later I assume that $p_i(s)$ is homogeneous in s.

Assumptions about $f(x_i, y_i)$:
- Thrice continuously differentiable in its arguments.
- Strictly increasing in each of its arguments.
- Strictly quasiconcave.
- Homogeneous of degree $t > 0$: $\forall k > 0 \ f(kx_i, ky_i) = k^t f(x_i, y_i)$.
- Inada conditions to rule out $x_i = 0$ or $y_i = 0$.

Examples:

$$p_i(s) = \frac{w_i s_i^r}{\sum_{j=1}^{n} w_j s_j^r}, \quad f(x_i, y_i) = \left[\alpha x^{\frac{\sigma-1}{\sigma}} + (1 - \alpha) y^{\frac{\sigma-1}{\sigma}} \right]^{\frac{\sigma}{\sigma-1}}$$
A model of a hybrid contest (2/2)

- Assumptions about $p_i(s)$:
 - Twice continuously differentiable in its arguments.
 - Strictly increasing and strictly concave in s_i.
 - Strictly decreasing in s_j for all $j \neq i$.
 - The contest is won by someone: $\sum_{j=1}^{n} p_j(s) = 1$.
 - Later I assume that $p_i(s)$ is homogeneous in s.

- Assumptions about $f(x_i, y_i)$:
 - Thrice continuously differentiable in its arguments.
 - Strictly increasing in each of its arguments.
 - Strictly quasiconcave.
 - Homogeneous of degree $t > 0$: $\forall k > 0 \quad f(kx_i, ky_i) = k^t f(x_i, y_i)$.
 - Inada conditions to rule out $x_i = 0$ or $y_i = 0$.

- Examples:

 $p_i(s) = \frac{w_i s_i^\sigma}{\sum_{j=1}^{n} w_j s_j^\sigma}$,
 $f(x_i, y_i) = \left[\alpha x^{\frac{\sigma-1}{\sigma}} + (1 - \alpha) y^{\frac{\sigma-1}{\sigma}}\right]^{\frac{\sigma}{\sigma-1}}$
A model of a hybrid contest (2/2)

- Assumptions about $p_i(s)$:
 - Twice continuously differentiable in its arguments.
 - Strictly increasing and strictly concave in s_i.
 - Strictly decreasing in s_j for all $j \neq i$.
 - The contest is won by someone: $\sum_{j=1}^{n} p_j(s) = 1$.
 - Later I assume that $p_i(s)$ is homogeneous in s.

- Assumptions about $f(x_i, y_i)$:
 - Thrice continuously differentiable in its arguments.
 - Strictly increasing in each of its arguments.
 - Strictly quasiconcave.
 - Homogeneous of degree $t > 0$: $\forall k > 0, f(kx_i, ky_i) = k^t f(x_i, y_i)$.
 - Inada conditions to rule out $x_i = 0$ or $y_i = 0$.

- Examples:

$$p_i(s) = \frac{w_i s_i^r}{\sum_{j=1}^{n} w_j s_j^r}, \quad f(x_i, y_i) = \left[\alpha x^{\frac{\sigma - 1}{\sigma}} + (1 - \alpha) y^{\frac{\sigma - 1}{\sigma}}\right]^{\frac{t \sigma}{\sigma - 1}}$$
One possible approach:
- Plug the production function into the CSF.
- Take FOCs w.r.t. x_i and y_i.
- Used by Haan and Schoonbeek (2003) and Melkoyan (2013), assuming Cobb-Douglas and CES, respectively.

My approach: Solve for contestant i’s best reply in two steps:
1. Compute the conditional factor demands.
 - That is, derive optimal x_i and y_i, given s (so also given s_i).
2. Plug the factor demands into the payoff and then characterize contestant i’s optimal score s_i (given s_{-i}).

Important advantage: a single choice variable at 2, so easier to determine what conditions are required for equilibrium existence.
One possible approach:
- Plug the production function into the CSF.
- Take FOCs w.r.t. \(x_i \) and \(y_i \).
- Used by Haan and Schoonbeek (2003) and Melkoyan (2013), assuming Cobb-Douglas and CES, respectively.

My approach: Solve for contestant \(i \)’s best reply in two steps:
1. Compute the conditional factor demands.
 - That is, derive optimal \(x_i \) and \(y_i \), given \(s \) (so also given \(s_i \)).
2. Plug the factor demands into the payoff and then characterize contestant \(i \)’s optimal score \(s_i \) (given \(s_{-i} \)).

Important advantage: a single choice variable at 2, so easier to determine what conditions are required for equilibrium existence.
Contestant i solves (for fixed p_i): $\min_{x_i, y_i} p_i y_i + x_i$, subject to $f(x_i, y_i) = s_i$.

The first-order conditions (λ_i is the Lagrange multiplier):

$$\frac{\partial L_i}{\partial x_i} = 1 - \lambda_i f_1(x_i, y_i) = 0, \quad \frac{\partial L_i}{\partial y_i} = p_i - \lambda_i f_2(x_i, y_i) = 0.$$

So, by combining the FOCs:

$$\frac{1}{p_i} = \frac{f_1(x_i, y_i)}{f_2(x_i, y_i)} \overset{\text{def}}{=} g \left(\frac{x_i}{y_i} \right) \Rightarrow x_i = y_i h \left(\frac{1}{p_i} \right),$$

where h is the inverse of g (i.e., $h \overset{\text{def}}{=} g^{-1}$).

By plugging back into $s_i = f(x_i, y_i)$ and rewriting, we obtain:

$$Y_i(s_i, p_i) = \left[\frac{s_i}{f(h(1/p_i), 1)} \right]^{1/t}, \quad X_i(s_i, p_i) = Y_i(s_i, p_i) h \left(\frac{1}{p_i} \right).$$

Contestant i’s payoff: $\pi_i(s) = p_i(s) v_i - C_i[s_i, p_i(s)]$, where

$$C_i[s_i, p_i(s)] \overset{\text{def}}{=} p_i(s) Y_i[s_i, p_i(s)] + X_i[s_i, p_i(s)].$$

A Nash equilibrium of the hybrid contest:

A profile s^* such that $\pi_i(s^*) \geq \pi_i(s_i, s^*)$, all i and all $s_i \geq 0$.
Contestant i solves (for fixed p_i): min\(_{x_i, y_i}\) $p_i y_i + x_i$, subject to $f(x_i, y_i) = s_i$.

The first-order conditions (λ_i is the Lagrange multiplier):

\[
\frac{\partial \mathcal{L}_i}{\partial x_i} = 1 - \lambda_i f_1(x_i, y_i) = 0, \quad \frac{\partial \mathcal{L}_i}{\partial y_i} = p_i - \lambda_i f_2(x_i, y_i) = 0.
\]

So, by combining the FOCs:

\[
\frac{1}{p_i} = \frac{f_1(x_i, y_i)}{f_2(x_i, y_i)} \overset{\text{def}}{=} g \left(\frac{x_i}{y_i} \right) \Rightarrow x_i = y_i h \left(\frac{1}{p_i} \right),
\]

where h is the inverse of g (i.e., $h \overset{\text{def}}{=} g^{-1}$).

By plugging back into $s_i = f(x_i, y_i)$ and rewriting, we obtain:

\[
Y_i(s_i, p_i) = \left[\frac{s_i}{f(h(1/p_i), 1)} \right]^{\frac{1}{t}}, \quad X_i(s_i, p_i) = Y_i(s_i, p_i) h \left(\frac{1}{p_i} \right).
\]

Contestant i’s payoff: $\pi_i(s) = p_i(s) v_i - C_i[s_i, p_i(s)]$, where

\[
C_i[s_i, p_i(s)] \overset{\text{def}}{=} p_i(s) Y_i[s_i, p_i(s)] + X_i[s_i, p_i(s)] .
\]

A Nash equilibrium of the hybrid contest:

A profile s^* such that $\pi_i(s^*) \geq \pi_i(s_i, s^*)$, all i and all $s_i \geq 0$.
Contestant i solves (for fixed p_i): $\min_{x_i,y_i} p_i y_i + x_i$, subject to $f(x_i, y_i) = s_i$.

The first-order conditions (λ_i is the Lagrange multiplier):

$$\frac{\partial L_i}{\partial x_i} = 1 - \lambda_i f_1(x_i, y_i) = 0, \quad \frac{\partial L_i}{\partial y_i} = p_i - \lambda_i f_2(x_i, y_i) = 0.$$

So, by combining the FOCs:

$$\frac{1}{p_i} = \frac{f_1(x_i, y_i)}{f_2(x_i, y_i)} \overset{\text{def}}{=} g\left(\frac{x_i}{y_i}\right) \Rightarrow x_i = y_i h\left(\frac{1}{p_i}\right),$$

where h is the inverse of g (i.e., $h \overset{\text{def}}{=} g^{-1}$).

By plugging back into $s_i = f(x_i, y_i)$ and rewriting, we obtain:

$$Y_i(s_i, p_i) = \left[\frac{s_i}{f(h(1/p_i), 1)}\right]^{1/t}, \quad X_i(s_i, p_i) = Y_i(s_i, p_i) h\left(\frac{1}{p_i}\right).$$

Contestant i’s payoff: $\pi_i(s) = p_i(s) v_i - C_i[s_i, p_i(s)]$, where

$$C_i[s_i, p_i(s)] \overset{\text{def}}{=} p_i(s) Y_i[s_i, p_i(s)] + X_i[s_i, p_i(s)].$$

A Nash equilibrium of the hybrid contest:

A profile s^* such that $\pi_i(s^*) \geq \pi_i(s_i, s^*)$, all i and all $s_i \geq 0$.
Contestant i solves (for fixed p_i): \(\min_{x_i, y_i} p_i y_i + x_i \), subject to \(f(x_i, y_i) = s_i \).

The first-order conditions (λ_i is the Lagrange multiplier):

\[
\frac{\partial L_i}{\partial x_i} = 1 - \lambda_i f_1(x_i, y_i) = 0, \quad \frac{\partial L_i}{\partial y_i} = p_i - \lambda_i f_2(x_i, y_i) = 0.
\]

So, by combining the FOCs:

\[
\frac{1}{p_i} = \frac{f_1(x_i, y_i)}{f_2(x_i, y_i)} \overset{\text{def}}{=} g \left(\frac{x_i}{y_i} \right) \Rightarrow x_i = y_i h \left(\frac{1}{p_i} \right),
\]

where h is the inverse of g (i.e., $h \overset{\text{def}}{=} g^{-1}$).

By plugging back into \(s_i = f(x_i, y_i) \) and rewriting, we obtain:

\[
Y_i(s_i, p_i) = \left[\frac{s_i}{f(h(1/p_i), 1)} \right]^{1/t}, \quad X_i(s_i, p_i) = Y_i(s_i, p_i) h \left(\frac{1}{p_i} \right).
\]

Contestant i’s payoff: \(\pi_i(s) = p_i(s) v_i - C_i[s_i, p_i(s)] \), where

\[
C_i[s_i, p_i(s)] \overset{\text{def}}{=} p_i(s) Y_i[s_i, p_i(s)] + X_i[s_i, p_i(s)].
\]

A Nash equilibrium of the hybrid contest:

A profile s^* such that \(\pi_i(s^*) \geq \pi_i(s_i, s^*) \), all i and all $s_i \geq 0$.
Contestant i solves (for fixed p_i): $\min_{x_i, y_i} p_i y_i + x_i$, subject to $f(x_i, y_i) = s_i$.

The first-order conditions (λ_i is the Lagrange multiplier):

$$\frac{\partial L_i}{\partial x_i} = 1 - \lambda_i f_1(x_i, y_i) = 0,$$

$$\frac{\partial L_i}{\partial y_i} = p_i - \lambda_i f_2(x_i, y_i) = 0.$$

So, by combining the FOCs:

$$\frac{1}{p_i} = \frac{f_1(x_i, y_i)}{f_2(x_i, y_i)} \overset{\text{def}}{=} g \left(\frac{x_i}{y_i} \right) \Rightarrow x_i = y_i h \left(\frac{1}{p_i} \right),$$

where h is the inverse of g (i.e., $h \overset{\text{def}}{=} g^{-1}$).

By plugging back into $s_i = f(x_i, y_i)$ and rewriting, we obtain:

$$Y_i(s_i, p_i) = \left[\frac{s_i}{f(h(1/p_i), 1)} \right]^{\frac{1}{t}}, \quad X_i(s_i, p_i) = Y_i(s_i, p_i) h \left(\frac{1}{p_i} \right).$$

Contestant i’s payoff: $\pi_i(s) = p_i(s) v_i - C_i[s_i, p_i(s)]$, where

$$C_i[s_i, p_i(s)] \overset{\text{def}}{=} p_i(s) Y_i[s_i, p_i(s)] + X_i[s_i, p_i(s)].$$

A Nash equilibrium of the hybrid contest:

A profile s^* such that $\pi_i(s^*) \geq \pi_i(s_i, s_i^*)$, all i and all $s_i \geq 0$.
Contestant i solves (for fixed p_i): $\min_{x_i,y_i} p_i y_i + x_i$, subject to $f(x_i, y_i) = s_i$.

The first-order conditions (λ_i is the Lagrange multiplier):

$$\frac{\partial \mathcal{L}_i}{\partial x_i} = 1 - \lambda_i f_1(x_i, y_i) = 0, \quad \frac{\partial \mathcal{L}_i}{\partial y_i} = p_i - \lambda_i f_2(x_i, y_i) = 0.$$

So, by combining the FOCs:

$$\frac{1}{p_i} = \frac{f_1(x_i, y_i)}{f_2(x_i, y_i)} \overset{\text{def}}{=} g \left(\frac{x_i}{y_i} \right) \Rightarrow x_i = y_i h \left(\frac{1}{p_i} \right),$$

where h is the inverse of g (i.e., $h \overset{\text{def}}{=} g^{-1}$).

By plugging back into $s_i = f(x_i, y_i)$ and rewriting, we obtain:

$$Y_i(s_i, p_i) = \left[\frac{s_i}{f(h(1/p_i), 1)} \right]^{\frac{1}{t}}, \quad X_i(s_i, p_i) = Y_i(s_i, p_i) h \left(\frac{1}{p_i} \right).$$

Contestant i's payoff: $\pi_i(s) = p_i(s) v_i - C_i[s_i, p_i(s)]$, where

$$C_i[s_i, p_i(s)] \overset{\text{def}}{=} p_i(s) Y_i[s_i, p_i(s)] + X_i[s_i, p_i(s)].$$

A Nash equilibrium of the hybrid contest:

A profile s^* such that $\pi_i(s^*) \geq \pi_i(s_i, s_{-i}^*)$, all i and all $s_i \geq 0$.

J. Lagerlöf (U of Copenhagen)
The cost-minimization problem and the h function

(a) Cost minimization.

(b) Graph of the g function.

(c) Graph of the h function.
Equilibrium existence

Define the following elasticities:

- The elasticity of output w.r.t. x_i: $\eta \left(\frac{1}{p_i} \right) \equiv \frac{f_1 \left[h \left(\frac{1}{p_i} \right), 1 \right] h \left(\frac{1}{p_i} \right)}{f \left[\frac{1}{p_i}, 1 \right]}$.

- The elasticity of substitution: $\sigma \left(\frac{1}{p_i} \right) \equiv -\frac{h' \left(\frac{1}{p_i} \right)}{h \left(\frac{1}{p_i} \right)} \frac{1}{p_i}$.

- The elasticity of the win probability w.r.t. s_i: $\varepsilon_i \left(s \right) \equiv \frac{\partial p_i}{\partial s_i} \frac{s_i}{p_i}$.

We have that $\eta \in (0, t)$, $\sigma > 0$, and $\varepsilon_i \in (0, 1)$.

Assumption 1. The production function and the CSF satisfy:

(i) $t \leq 1$ and $\varepsilon_i \left(s \right) \eta \left(\frac{1}{p_i} \right) \sigma \left(\frac{1}{p_i} \right) \leq 2$ (for all p_i and s);

Proposition 1. Suppose Assumption 1 is satisfied. Then there exists a pure strategy Nash equilibrium of the hybrid contest.
Equilibrium existence

Define the following elasticities:

- The elasticity of output w.r.t. x_i: $\eta \left(\frac{1}{p_i} \right) \overset{\text{def}}{=} \frac{f_1 \left[h \left(\frac{1}{p_i} \right), 1 \right] h \left(\frac{1}{p_i} \right)}{f \left[h \left(\frac{1}{p_i} \right), 1 \right]}$.

- The elasticity of substitution: $\sigma \left(\frac{1}{p_i} \right) \overset{\text{def}}{=} -\frac{h' \left(\frac{1}{p_i} \right) \frac{1}{p_i}}{h \left(\frac{1}{p_i} \right)}$.

- The elasticity of the win probability w.r.t. s_i: $\varepsilon_i \left(s \right) \overset{\text{def}}{=} \frac{\partial p_i}{\partial s_i} \frac{s_i}{p_i}$.

- We have that $\eta \in (0, t)$, $\sigma > 0$, and $\varepsilon_i \in (0, 1)$.

- **Assumption 1.** The production function and the CSF satisfy:

 (i) $t \leq 1$ and $\varepsilon_i \left(s \right) \eta \left(\frac{1}{p_i} \right) \sigma \left(\frac{1}{p_i} \right) \leq 2$ (for all p_i and s);

- **Proposition 1.** Suppose Assumption 1 is satisfied. Then there exists a pure strategy Nash equilibrium of the hybrid contest.
Equilibrium existence

Define the following elasticities:

- The elasticity of output w.r.t. x_i: $\eta \left(\frac{1}{p_i} \right) \overset{\text{def}}{=} \frac{f_1 \left[h \left(\frac{1}{p_i} \right), 1 \right] f \left(\frac{1}{p_i} \right)}{f \left(\frac{1}{p_i} \right)}$.

- The elasticity of substitution: $\sigma \left(\frac{1}{p_i} \right) \overset{\text{def}}{=} - \frac{h^\prime \left(\frac{1}{p_i} \right) \frac{1}{p_i}}{h \left(\frac{1}{p_i} \right)}$.

- The elasticity of the win probability w.r.t. s_i: $\varepsilon_i \left(s \right) \overset{\text{def}}{=} \frac{\partial p_i}{\partial s_i} \frac{s_i}{p_i}$.

- We have that $\eta \in (0, t), \sigma > 0$, and $\varepsilon_i \in (0, 1)$.

- **Assumption 1.** The production function and the CSF satisfy:

 (i) $t \leq 1$ and $\varepsilon_i \left(s \right) \eta \left(\frac{1}{p_i} \right) \sigma \left(\frac{1}{p_i} \right) \leq 2$ (for all p_i and s);

- **Proposition 1.** Suppose Assumption 1 is satisfied. Then there exists a pure strategy Nash equilibrium of the hybrid contest.
Equilibrium existence

Define the following elasticities:

- The elasticity of output w.r.t. \(x_i \):
 \[
 \eta \left(\frac{1}{p_i} \right) \overset{\text{def}}{=} \frac{f_1 \left[h \left(\frac{1}{p_i} \right), 1 \right] h \left(\frac{1}{p_i} \right)}{f \left[h \left(\frac{1}{p_i} \right), 1 \right]}.
 \]

- The elasticity of substitution:
 \[
 \sigma \left(\frac{1}{p_i} \right) \overset{\text{def}}{=} -\frac{h' \left(\frac{1}{p_i} \right)}{h \left(\frac{1}{p_i} \right)} \frac{1}{p_i}.
 \]

- The elasticity of the win probability w.r.t. \(s_i \):
 \[
 \varepsilon_i \left(s \right) \overset{\text{def}}{=} \frac{\partial p_i}{\partial s_i} \frac{s_i}{p_i}.
 \]

- We have that \(\eta \in (0, t) \), \(\sigma > 0 \), and \(\varepsilon_i \in (0, 1) \).

Assumption 1. The production function and the CSF satisfy:

\(t \leq 1 \) and \(\varepsilon_i \left(s \right) \eta \left(\frac{1}{p_i} \right) \sigma \left(\frac{1}{p_i} \right) \leq 2 \) (for all \(p_i \) and \(s \)).

Proposition 1. Suppose Assumption 1 is satisfied. Then there exists a pure strategy Nash equilibrium of the hybrid contest.
Assume a CES production function, \(t = 1, r \leq 1 \), and

\[
p_i(s) = \frac{w_i s^r_i}{\sum_{j=1}^{n} w_j s^r_j} \quad \text{and} \quad p_i(0, \cdots, 0) = \frac{w_i}{\sum_{j=1}^{n} w_j}.
\]

Assumption 1 satisfied

\[
\Theta(\sigma, r) \overset{\text{def}}{=} \frac{\left(\frac{2}{r \sigma - 2}\right)^{\frac{1}{\sigma}}}{1 + \left(\frac{2}{r \sigma - 2}\right)^{\frac{1}{\sigma}}}
\]
To check the SOC with Melkoyan’s analytical approach is cumbersome and in the end he relies on numerical simulations:

\[\text{[\ldots] one can demonstrate, after a series of tedious algebraic manipulations, that a player’s payoff function is locally concave at the symmetric equilibrium candidate in (7) if and only if [large mathematical expression]. [\ldots] Numerical simulations indicate that this inequality is violated only for extreme values of the parameters [\ldots]. In addition to verifying the local second-order conditions, I have used numerical simulations to verify that the global second-order conditions are satisfied under a wide range of scenarios.} \]
Characterization of equilibrium

- Recall: \(\pi_i(s) = p_i(s)v_i - C_i[s_i, p_i(s)] \).
- The FOC (with an equality if \(s_i > 0 \)):
 \[
 \frac{\partial \pi_i(s)}{\partial s_i} = \frac{\partial p_i(s)}{\partial s_i}v_i - C_1(s_i, p_i) - C_2(s_i, p_i) \frac{\partial p_i(s)}{\partial s_i} \leq 0.
 \]
- Use Shephard’s lemma, \(C_2(s_i, p_i) = Y_i[s_i, p_i(s)] \):
 \[
 [v_i - Y_i(s_i, p_i(s))] \frac{\partial p_i(s)}{\partial s_i} \leq C_1(s_i, p_i), \tag{1}
 \]
 with an equality if \(s_i > 0 \).
- **Proposition 2.** Suppose Assumption 1 is satisfied. Then \(s^* = (s_1^*, \ldots, s_n^*) \) is a pure strategy Nash equilibrium of the hybrid contest if and only if condition (1) holds, with equality if \(s_i^* > 0 \), for each contestant \(i \).
Characterization of equilibrium

- Recall: \(\pi_i(s) = p_i(s) \nu_i - C_i[s_i, p_i(s)] \).
- The FOC (with an equality if \(s_i > 0 \)):

\[
\frac{\partial \pi_i(s)}{\partial s_i} = \frac{\partial p_i(s)}{\partial s_i} \nu_i - C_1(s_i, p_i) - C_2(s_i, p_i) \frac{\partial p_i(s)}{\partial s_i} \leq 0.
\]

- Use Shephard’s lemma, \(C_2(s_i, p_i) = Y_i[s_i, p_i(s)] \):

\[
[v_i - Y_i(s_i, p_i(s))] \frac{\partial p_i(s)}{\partial s_i} \leq C_1(s_i, p_i),
\]

with an equality if \(s_i > 0 \).

- Proposition 2. Suppose Assumption 1 is satisfied. Then \(s^* = (s_1^*, \ldots, s_n^*) \) is a pure strategy Nash equilibrium of the hybrid contest if and only if condition (1) holds, with equality if \(s_i^* > 0 \), for each contestant \(i \).
Characterization of equilibrium

- Recall: \(\pi_i(s) = p_i(s) v_i - C_i[s_i, p_i(s)] \).
- The FOC (with an equality if \(s_i > 0 \)):
 \[
 \frac{\partial \pi_i(s)}{\partial s_i} = \frac{\partial p_i(s)}{\partial s_i} v_i - C_1(s_i, p_i) - C_2(s_i, p_i) \frac{\partial p_i(s)}{\partial s_i} \leq 0.
 \]
- Use Shephard’s lemma, \(C_2(s_i, p_i) = Y_i[s_i, p_i(s)] \):
 \[
 [v_i - Y_i(s_i, p_i(s))] \frac{\partial p_i(s)}{\partial s_i} \leq C_1(s_i, p_i), \tag{1}
 \]
 with an equality if \(s_i > 0 \).
- \textbf{Proposition 2.} Suppose Assumption 1 is satisfied. Then \(s^* = (s_1^*, \ldots, s_n^*) \) is a pure strategy Nash equilibrium of the hybrid contest if and only if condition (1) holds, with equality if \(s_i^* > 0 \), for each contestant \(i \).
Characterization of equilibrium

- Recall: \(\pi_i(s) = p_i(s)v_i - C_i[s_i, p_i(s)] \).
- The FOC (with an equality if \(s_i > 0 \)):

\[
\frac{\partial \pi_i(s)}{\partial s_i} = \frac{\partial p_i(s)}{\partial s_i} v_i - C_1(s_i, p_i) - C_2(s_i, p_i) \frac{\partial p_i(s)}{\partial s_i} \leq 0.
\]

- Use Shephard's lemma, \(C_2(s_i, p_i) = Y_i[s_i, p_i(s)] \):

\[
[v_i - Y_i(s_i, p_i(s))] \frac{\partial p_i(s)}{\partial s_i} \leq C_1(s_i, p_i), \tag{1}
\]

with an equality if \(s_i > 0 \).

- Proposition 2. Suppose Assumption 1 is satisfied. Then \(s^* = (s_1^*, \ldots, s_n^*) \) is a pure strategy Nash equilibrium of the hybrid contest if and only if condition (1) holds, with equality if \(s_i^* > 0 \), for each contestant \(i \).
Characterization of equilibrium

- Recall: \(\pi_i (s) = p_i (s) v_i - C_i [s_i, p_i (s)] \).
- The FOC (with an equality if \(s_i > 0 \)):
 \[
 \frac{\partial \pi_i (s)}{\partial s_i} = \frac{\partial p_i (s)}{\partial s_i} v_i - C_1 (s_i, p_i) - C_2 (s_i, p_i) \frac{\partial p_i (s)}{\partial s_i} \leq 0.
 \]

- Use Shephard’s lemma, \(C_2 (s_i, p_i) = Y_i [s_i, p_i (s)] \):
 \[
 \left[v_i - Y_i (s_i, p_i (s)) \right] \frac{\partial p_i (s)}{\partial s_i} \leq C_1 (s_i, p_i), \tag{1}
 \]
 with an equality if \(s_i > 0 \).

- **Proposition 2.** Suppose Assumption 1 is satisfied. Then \(s^* = (s_1^*, \ldots, s_n^*) \) is a pure strategy Nash equilibrium of the hybrid contest if and only if condition (1) holds, with equality if \(s_i^* > 0 \), for each contestant \(i \).
Assumption 2. The CSF is symmetric and homogeneous of degree 0.

Note that, thanks to Assumption 2:

\[
\frac{\partial p_i(s, s, \ldots, s)}{\partial s_i} = \frac{\widehat{\varepsilon}(n)}{ns}, \text{ where } \widehat{\varepsilon}(n) \overset{\text{def}}{=} \varepsilon_i (1, 1, \ldots, 1).
\]

Use this in the FOC and impose symmetry:

\[
(v - y^*) \frac{\widehat{\varepsilon}(n)}{ns^*} = C_1 \begin{bmatrix} s^*, \frac{1}{n} \end{bmatrix} = \frac{1}{ts^*} C \begin{bmatrix} s^*, \frac{1}{n} \end{bmatrix} = \frac{1}{ts^*} \begin{bmatrix} y^* + x^* \\ n \end{bmatrix}
\]

\[\Leftrightarrow (v - y^*) t\widehat{\varepsilon}(n) = y^* + nx^* . \text{ And from before, } x^* = h(n)y^* .
\]

The last equalities are linear in \(x^*\) and \(y^*\), so easy to solve.

Proposition 3. Within the family of sym. eq., there is a unique pure strategy equilibrium: \(s^* = f[h(n), 1] (y^*)^t, x^* = h(n)y^* , \text{ and } y^* = \frac{t\widehat{\varepsilon}(n)v}{1 + nh(n) + t\widehat{\varepsilon}(n)}\).
A Symmetric Hybrid Contest (1/4)

Assumption 2. The CSF is symmetric and homogeneous of degree 0.

- Note that, thanks to Assumption 2:

\[
\frac{\partial p_i(s, s, \ldots, s)}{\partial s_i} = \frac{\hat{\varepsilon}(n)}{ns}, \text{ where } \hat{\varepsilon}(n) \overset{\text{def}}{=} \varepsilon_i(1, 1, \ldots, 1).
\]

- Use this in the FOC and impose symmetry:

\[
(v - y^*) \frac{\hat{\varepsilon}(n)}{ns^*} = C_1 \begin{bmatrix} s^*, & 1/n \end{bmatrix} = \frac{1}{ts^*} C \begin{bmatrix} s^*, & 1/n \end{bmatrix} = \frac{1}{ts^*} \begin{bmatrix} y^* + x^* \end{bmatrix}
\]

\[
\Leftrightarrow (v - y^*) t\hat{\varepsilon}(n) = y^* + nx^*. \text{ And from before, } x^* = h(n)y^*.
\]

- The last equalities are linear in \(x^*\) and \(y^*\), so easy to solve.

- **Proposition 3.** Within the family of sym. eq., there is a unique pure strategy equilibrium: \(s^* = f[h(n), 1](y^*)^t\), \(x^* = h(n)y^*\), and

\[
y^* = \frac{t\hat{\varepsilon}(n)v}{1 + nh(n) + t\hat{\varepsilon}(n)}.
\]
A Symmetric Hybrid Contest (1/4)

Assumption 2. The CSF is symmetric and homogeneous of degree 0.

- Note that, thanks to Assumption 2:
 \[
 \frac{\partial p_i(s, s, \ldots, s)}{\partial s_i} = \frac{\widehat{\varepsilon}(n)}{ns}, \text{ where } \widehat{\varepsilon}(n) \overset{\text{def}}{=} \varepsilon; (1, 1, \ldots, 1).
 \]

- Use this in the FOC and impose symmetry:
 \[
 (v - y^*) \frac{\widehat{\varepsilon}(n)}{ns^*} = C_1
 \begin{bmatrix}
 s^* \\
 \frac{1}{n}
 \end{bmatrix} = \frac{1}{ts^*} C
 \begin{bmatrix}
 s^* \\
 \frac{1}{n}
 \end{bmatrix} = \frac{1}{ts^*} \left[\frac{y^*}{n} + x^* \right]
 \]
 \[
 \iff (v - y^*) t\widehat{\varepsilon}(n) = y^* + nx^*. \text{ And from before, } x^* = h(n)y^*.
 \]

- The last equalities are linear in \(x^*\) and \(y^*\), so easy to solve.

Proposition 3. Within the family of sym. eq., there is a unique pure strategy equilibrium: \(s^* = f[h(n), 1](y^*)^t\), \(x^* = h(n)y^*\), and

\[
 y^* = \frac{t\widehat{\varepsilon}(n)v}{1 + nh(n) + t\widehat{\varepsilon}(n)}.
\]
Assumption 2. The CSF is symmetric and homogeneous of degree 0.

- Note that, thanks to Assumption 2:

\[
\frac{\partial p_i(s, s, \ldots, s)}{\partial s_i} = \frac{\widehat{\varepsilon}(n)}{ns}, \quad \text{where} \quad \widehat{\varepsilon}(n) \overset{\text{def}}{=} \varepsilon_i(1, 1, \ldots, 1).
\]

- Use this in the FOC and impose symmetry:

\[
(v - y^*) \frac{\widehat{\varepsilon}(n)}{ns^*} = C_1 \left[s^*, \frac{1}{n} \right] = \frac{1}{ts^*} C \left[s^*, \frac{1}{n} \right] = \frac{1}{ts^*} \left[\frac{y^*}{n} + x^* \right]
\]

\[
\Leftrightarrow (v - y^*) \, t\widehat{\varepsilon}(n) = y^* + nx^*. \quad \text{And from before,} \quad x^* = h(n)y^*.
\]

- The last equalities are linear in \(x^* \) and \(y^* \), so easy to solve.

Proposition 3. Within the family of sym. eq., there is a unique pure strategy equilibrium: \(s^* = f[h(n), 1] (y^*)^t \), \(x^* = h(n)y^* \), and

\[
y^* = \frac{t\widehat{\varepsilon}(n)v}{1 + nh(n) + t\widehat{\varepsilon}(n)}.
\]
Assumption 2. The CSF is symmetric and homogeneous of degree 0.

- Note that, thanks to Assumption 2:
 \[
 \frac{\partial p_i(s, s, \ldots, s)}{\partial s_i} = \frac{\widehat{\varepsilon}(n)}{ns}, \quad \text{where } \widehat{\varepsilon}(n) \overset{\text{def}}{=} \varepsilon_i(1, 1, \ldots, 1).
 \]

- Use this in the FOC and impose symmetry:
 \[
 (v - y^*) \frac{\widehat{\varepsilon}(n)}{ns^*} = C_1 \left[s^*, \frac{1}{n} \right] = \frac{1}{ts^*} C \left[s^*, \frac{1}{n} \right] = \frac{1}{ts^*} \left[\frac{y^*}{n} + x^* \right]
 \]

 \[\Leftrightarrow (v - y^*) \frac{t \widehat{\varepsilon}(n)}{n} = y^* + nx^*. \text{ And from before, } x^* = h(n)y^*.
 \]

- The last equalities are linear in \(x^*\) and \(y^*\), so easy to solve.

Proposition 3. Within the family of sym. eq., there is a unique pure strategy equilibrium:
\[s^* = f[h(n), 1] (y^*)^t, \quad x^* = h(n)y^*, \text{ and}\]

\[y^* = \frac{t \widehat{\varepsilon}(n)v}{1 + nh(n) + t \widehat{\varepsilon}(n)}.\]
Assumption 2. The CSF is symmetric and homogeneous of degree 0.

- Note that, thanks to Assumption 2:

\[
\frac{\partial p_i(s, s, \ldots, s)}{\partial s_i} = \frac{\hat{\varepsilon}(n)}{ns}, \quad \text{where} \quad \hat{\varepsilon}(n) \overset{\text{def}}{=} \varepsilon_i(1, 1, \ldots, 1).
\]

- Use this in the FOC and impose symmetry:

\[
(v - y^*) \frac{\hat{\varepsilon}(n)}{ns^*} = C_1 \left[s^*, \frac{1}{n} \right] = \frac{1}{ts^*} C \left[s^*, \frac{1}{n} \right] = \frac{1}{ts^*} \left[\frac{y^*}{n} + x^* \right]
\]

\[
\iff (v - y^*) t\hat{\varepsilon}(n) = y^* + nx^*. \quad \text{And from before,} \quad x^* = h(n)y^*.
\]

- The last equalities are linear in \(x^*\) and \(y^*\), so easy to solve.

Proposition 3. Within the family of sym. eq., there is a unique pure strategy equilibrium: \(s^* = f[h(n), 1](y^*)^t\), \(x^* = h(n)y^*\), and

\[
y^* = \frac{t\hat{\varepsilon}(n)v}{1 + nh(n) + t\hat{\varepsilon}(n)}.
\]
A Symmetric Hybrid Contest (1/4)

Assumption 2. The CSF is symmetric and homogeneous of degree 0.

- Note that, thanks to Assumption 2:
 \[
 \frac{\partial p_i(s, s, \ldots, s)}{\partial s_i} = \frac{\widehat{\varepsilon}(n)}{ns}, \quad \text{where } \widehat{\varepsilon}(n) \overset{\text{def}}{=} \varepsilon_i(1, 1, \ldots, 1).
 \]

- Use this in the FOC and impose symmetry:
 \[
 (v - y^*) \frac{\widehat{\varepsilon}(n)}{ns^*} = C_1 \left[s^*, \frac{1}{n} \right] = \frac{1}{ts^*} C \left[s^*, \frac{1}{n} \right] = \frac{1}{ts^*} \left[\frac{y^*}{n} + x^* \right]
 \]
 \[
 \iff (v - y^*) t\widehat{\varepsilon}(n) = y^* + nx^*. \quad \text{And from before, } x^* = h(n)y^*.
 \]

- The last equalities are linear in x^* and y^*, so easy to solve.

- Proposition 3. Within the family of sym. eq., there is a unique pure strategy equilibrium: $s^* = f[h(n), 1] (y^*)^t$, $x^* = h(n)y^*$, and

\[
y^* = \frac{t\widehat{\varepsilon}(n)v}{1 + nh(n) + t\widehat{\varepsilon}(n)}.
\]
Assumption 2. The CSF is symmetric and homogeneous of degree 0.

Note that, thanks to Assumption 2:

\[
\frac{\partial p_i(s, s, \ldots, s)}{\partial s_i} = \hat{\varepsilon}(n) \frac{n}{ns}, \quad \text{where} \quad \hat{\varepsilon}(n) \overset{\text{def}}{=} \varepsilon_i(1, 1, \ldots, 1).
\]

Use this in the FOC and impose symmetry:

\[
(v - y^*) \frac{\hat{\varepsilon}(n)}{ns^*} = C_1 \begin{bmatrix} s^*, \frac{1}{n} \end{bmatrix} = \frac{1}{ts^*} C \begin{bmatrix} s^*, \frac{1}{n} \end{bmatrix} = \frac{1}{ts^*} \begin{bmatrix} y^* + x^* \end{bmatrix}
\]

\[
\iff (v - y^*) t\hat{\varepsilon}(n) = y^* + nx^*. \quad \text{And from before,} \quad x^* = h(n)y^*.
\]

The last equalities are linear in \(x^*\) and \(y^*\), so easy to solve.

Proposition 3. Within the family of sym. eq., there is a unique pure strategy equilibrium: \(s^* = f[h(n), 1](y^*)^t, x^* = h(n)y^*,\) and

\[
y^* = \frac{t\hat{\varepsilon}(n)v}{1 + nh(n) + t\hat{\varepsilon}(n)}.
\]
A Symmetric Hybrid Contest (1/4)

Assumption 2. The CSF is symmetric and homogeneous of degree 0.

- Note that, thanks to Assumption 2:

\[
\frac{\partial p_i(s, s, \ldots, s)}{\partial s_i} = \frac{\hat{\varepsilon}(n)}{ns}, \quad \text{where } \hat{\varepsilon}(n) \overset{\text{def}}{=} \varepsilon_i(1, 1, \ldots, 1).
\]

- Use this in the FOC and impose symmetry:

\[
(v - y^*) \frac{\hat{\varepsilon}(n)}{ns^*} = C_1 \begin{bmatrix} s^*, \frac{1}{n} \end{bmatrix} = \frac{1}{ts^*} C \begin{bmatrix} s^*, \frac{1}{n} \end{bmatrix} = \frac{1}{ts^*} \begin{bmatrix} y^* + x^* \end{bmatrix}
\]

\[
\iff (v - y^*) t\hat{\varepsilon}(n) = y^* + nx^*. \quad \text{And from before, } x^* = h(n)y^*.
\]

- The last equalities are linear in x^* and y^*, so easy to solve.

- **Proposition 3.** Within the family of sym. eq., there is a unique pure strategy equilibrium: $s^* = f[h(n), 1](y^*)^t$, $x^* = h(n)y^*$, and

\[
y^* = \frac{t\hat{\varepsilon}(n)v}{1 + nh(n) + t\hat{\varepsilon}(n)}.
\]
Proposition 4. Effect of more contestants on x^* and y^*:

\[
\frac{\partial x^*}{\partial n} < 0 \iff \sigma(n) > \frac{n(n - 2)h(n) - 1}{(n - 1)[1 + t\widehat{\epsilon}(n)]},
\]
\[
\frac{\partial y^*}{\partial n} > 0 \iff \sigma(n) > \frac{n(n - 2)h(n) - 1}{(n - 1)nh(n)};
\]

and if $\sigma(n) \geq 1$, then necessarily $\frac{\partial x^*}{\partial n} < 0$ and $\frac{\partial y^*}{\partial n} > 0$.

In order to understand the above:

- More contestants means a lower probability of winning.
- This lowers the relative cost of investing in y_i.
- So whenever $\sigma(n)$ is sufficiently large, $\frac{\partial y^*}{\partial n} > 0$ and $\frac{\partial x^*}{\partial n} < 0$.
- But if $\sigma(n)$ small, the derivatives must have the same sign. For:

\[
\frac{\partial y^*}{\partial n} \frac{n}{y^*} = \sigma(n) + \frac{\partial x^*}{\partial n} \frac{n}{x^*} \quad \text{(follows from } x^* = h(n)y^* \text{)}.
\]

As $\sigma(n) \to 0$, the production function requires x_i and y_i to be used in fixed proportions (a Leontief production technology).
The total amount of equilibrium expenditures in the symmetric hybrid model is defined as $R^H \overset{\text{def}}{=} nC \left[s^*, \frac{1}{n} \right]$. The corresponding amount in the all-pay contest: $R^A = t\widehat{e}(n)v$.

Proposition 5, part (a). In the symmetric model:

$$R^H = (1 - \frac{y^*}{v})R^A = \left[\frac{1}{v [1 + nh(n)]} + \frac{1}{R^A} \right]^{-1}.$$

In particular, for any finite n, we have $R^H < R^A$.

The payoff suggests the intuition: $\pi_i = (v_i - y_i)p_i(s) - x_i$.

Proposition 5, part (b). In the symmetric model, suppose $p_i(s) = \phi(s_i)/\sum_{j=1}^n \phi(s_j)$, where ϕ is a strictly increasing and concave function satisfying $\phi(0) = 0$.

Then R^H is weakly increasing in n if and only if: (i)

$$\sigma(n) \leq 1 + \frac{4n}{tr(n - 1)^2};$$

or (ii) inequality (2) is violated and $h(n) \notin (\Xi_L, \Xi_H)$. See figure!
The total amount of equilibrium expenditures in the symmetric hybrid model is defined as $R^H \overset{\text{def}}{=} nC \left[s^*, \frac{1}{n} \right]$. The corresponding amount in the all-pay contest: $R^A = t\hat{e}(n)v$.

Proposition 5, part (a). In the symmetric model:

$$R^H = (1 - \frac{y^*}{v})R^A = \left[\frac{1}{v \left[1 + nh(n) \right]} + \frac{1}{R^A} \right]^{-1}.$$

In particular, for any finite n, we have $R^H < R^A$.

The payoff suggests the intuition: $\pi_i = (v_i - y_i) p_i(s) - x_i$.

Proposition 5, part (b). In the symmetric model, suppose $p_i(s) = \phi(s_i)/\sum_{j=1}^n \phi(s_j)$, where ϕ is a strictly increasing and concave function satisfying $\phi(0) = 0$.

Then R^H is weakly increasing in n if and only if: (i)

$$\sigma(n) \leq 1 + \frac{4n}{tr(n-1)^2}; \quad (2)$$

or (ii) inequality (2) is violated and $h(n) \notin (\Xi_L, \Xi_H)$. See figure!
Assume CES, $t = 1$, and $n = 10$.

Assumption 1 satisfied

R^H decreasing in n at $n = 10$
I assume $n = 2$ and I study three models:
- The CSF is biased in favor of one contestant.
- One contestant has a higher valuation than the other.
- I also endogenize the degree of bias.

Assumption 3. The CSF is given by

$$p_i(s) = \frac{w_i s_i^r}{w_1 s_1^r + w_2 s_2^r}.$$

The following three equations define equilibrium values of p_1^*, y_1^*, and y_2^*:

$$y_i^* = \frac{rtp_i^*(1 - p_i^*) v_i}{rtp_i^*(1 - p_i^*) + p_i^* + h \left(\frac{1}{p_i^*} \right)}, \quad \text{for } i = 1, 2, \text{ and } \Upsilon(p_1^*) = 0,$$

where

$$\Upsilon(p_1) \overset{\text{def}}{=} \frac{w_2 v_2^r}{w_1 v_1^r} p_1 f \left[h \left(\frac{1}{1 - p_1} \right), 1 \right]^r \left[rtp_1(1 - p_1) + 1 - p_1 + h \left(\frac{1}{1 - p_1} \right) \right]^r - \left(1 - p_1 \right) f \left[h \left(\frac{1}{p_1} \right), 1 \right]^r \left[rtp_1(1 - p_1) + p_1 + h \left(\frac{1}{p_1} \right) \right]^r.$$

The equilibrium is unique if $r \eta \left(\frac{1}{p_i} \right) \sigma \left(\frac{1}{p_i} \right) \leq 1.$
I assume $n = 2$ and I study three models:
- The CSF is biased in favor of one contestant.
- One contestant has a higher valuation than the other.
- I also endogenize the degree of bias.

Assumption 3. The CSF is given by

$$p_i(s) = \frac{w_i s^r_i}{w_1 s^r_1 + w_2 s^r_2}.$$

The following three equations define equilibrium values of p_1^*, y_1^*, and y_2^*:

$$y_i^* = \frac{rtp_i^*(1 - p_i^*) v_i}{rt p_i^*(1 - p_i^*) + p_i^* + h\left(\frac{1}{p_i^*}\right)}, \quad \text{for } i = 1, 2, \text{ and } \gamma(p_1^*) = 0,$$

where

$$\gamma(p_1) \overset{\text{def}}{=} \frac{w_2 v_2^r}{w_1 v_1^r} p_1 f \left[h\left(\frac{1}{1-p_1}\right), 1\right]^r - \frac{(1 - p_1) f \left[h\left(\frac{1}{p_1}\right), 1\right]^r}{r t p_1 (1 - p_1) + p_1 + h\left(\frac{1}{p_1}\right)}.$$

The equilibrium is unique if $r \eta \left(\frac{1}{p_i}\right) \sigma \left(\frac{1}{p_i}\right) \leq 1.$
I assume $n = 2$ and I study three models:

- The CSF is biased in favor of one contestant.
- One contestant has a higher valuation than the other.
- I also endogenize the degree of bias.

Assumption 3. The CSF is given by

$$p_i(s) = \frac{w_i s_i^r}{w_1 s_1^r + w_2 s_2^r}.$$

The following three equations define equilibrium values of p_1^*, y_1^*, and y_2^*:

$$y_i^* = \frac{rtp_i^*(1 - p_i^*)v_i}{rtp_i^*(1 - p_i^*) + p_i^* + h\left(\frac{1}{p_i^*}\right)}, \quad \text{for } i = 1, 2, \text{ and } \Upsilon(p_1^*) = 0,$$

where

$$\Upsilon(p_1) \overset{\text{def}}{=} \frac{w_2 v_2^r}{w_1 v_1^r} p_1 f \left[h\left(\frac{1}{1-p_1}\right), 1 \right]^r - \frac{(1 - p_1) f \left[h\left(\frac{1}{p_1}\right), 1 \right]^r}{rtp_1(1 - p_1) + p_1 + h\left(\frac{1}{p_1}\right)}.$$

The equilibrium is unique if $r\eta\left(\frac{1}{p_i}\right) \sigma\left(\frac{1}{p_i}\right) \leq 1$.

[19 / 24]
A Biased decision process \((w_1 \neq w_2 \text{ but } \nu_1 = \nu_2)\)

Among the results:

(a) \(p_1^* > p_2^* \iff y_1^* < y_2^* \iff C(s_1^*, p_1^*) > C(s_2^*, p_2^*)\).

(b) Evaluated at symmetry \((w_1 = w_2)\): \(\frac{\partial p_1^*}{\partial w_1} > 0\),

\[
\frac{\partial y_1^*}{\partial w_1} < 0, \quad \frac{\partial y_2^*}{\partial w_1} > 0, \quad \frac{\partial x_1^*}{\partial w_1} > 0 \iff \frac{\partial x_2^*}{\partial w_1} < 0 \iff \sigma(2) > \frac{2}{2 + rt}.
\]

Different valuations \((\nu_1 \neq \nu_2 \text{ but } w_1 = w_2)\)

Among the results:

(a) \(p_1^* > p_2^* \iff \frac{y_1^*}{\nu_1} < \frac{y_2^*}{\nu_2}\).

(b) \(\nu_1 - y_1^* > \nu_2 - y_2^* \iff C(s_1^*, p_1^*) > C(s_2^*, p_2^*)\).
Asymmetric Hybrid Contests (2/4)

A Biased decision process \((w_1 \neq w_2 \text{ but } v_1 = v_2)\)

- Among the results:

 (a) \(p_1^* > p_2^* \iff y_1^* < y_2^* \iff C(s_1^*, p_1^*) > C(s_2^*, p_2^*).\)

 (b) Evaluated at symmetry \((w_1 = w_2)\): \(\frac{\partial p_1^*}{\partial w_1} > 0,\)

\[
\frac{\partial y_1^*}{\partial w_1} < 0, \quad \frac{\partial y_2^*}{\partial w_1} > 0, \quad \frac{\partial x_1^*}{\partial w_1} > 0 \iff \frac{\partial x_2^*}{\partial w_1} < 0 \iff \sigma(2) > \frac{2}{2 + rt}.
\]

Different valuations \((v_1 \neq v_2 \text{ but } w_1 = w_2)\)

- Among the results:

 (a) \(p_1^* > p_2^* \iff \frac{y_1^*}{v_1} < \frac{y_2^*}{v_2}.\)

 (b) \(v_1 - y_1^* > v_2 - y_2^* \iff C(s_1^*, p_1^*) > C(s_2^*, p_2^*).\)
An Endogenous Bias (w_1 chosen, but $v_1 \geq v_2$ and w_2 fixed)

- Timing of events in the game:
 1. A principal chooses w_1 to maximize $R^H = C(s_1^*, p_1^*) + C(s_2^*, p_2^*)$.
 2. w_1 becomes common knowledge and the contestants interact as in the previous analysis.

- Assumption 3. The production function is of Cobb-Douglas form: $f(x_i, y_i) = x_i^\alpha y_i^\beta$, for $\alpha > 0$ and $\beta > 0$.

- Results: The equilibrium values of p_1 and w_1 satisfy:
 - If $v_1 = v_2$, then $\hat{p}_1 = \frac{1}{2}$ and $\hat{w}_1 = w_2$.
 - If $v_1 > v_2$, then $\hat{p}_1 > \frac{1}{2}$.
 - If $v_1 > v_2$, then $\hat{w}_1 < w_2$ at least if $|v_1 - v_2|$ is very small or big.

- My intuition for results:
 - Contestant 1 is more valuable as a contributor (as $v_1 > v_2$).
 - Hence, she should be encouraged to use x_1, as all-pay investments are more conducive to large expenditures.
 - This is achieved by making winner-pay inv. costly: $\hat{p}_1 > \frac{1}{2}$.
 - To generate $\hat{p}_1 > \frac{1}{2}$, $v_1 > v_2$ is more than enough, so bias can be in favor of Contestant 2.
 - Might not be robust.
An Endogenous Bias (w_1 chosen, but $v_1 \geq v_2$ and w_2 fixed)

Timing of events in the game:
1. A principal chooses w_1 to maximize $R^H = C(s_1^*, p_1^*) + C(s_2^*, p_2^*)$.
2. w_1 becomes common knowledge and the contestants interact as in the previous analysis.

Assumption 3. The production function is of Cobb-Douglas form: $f(x_i, y_i) = x_i^\alpha y_i^\beta$, for $\alpha > 0$ and $\beta > 0$.

Results: The equilibrium values of p_1 and w_1 satisfy:
- If $v_1 = v_2$, then $\hat{p}_1 = \frac{1}{2}$ and $\hat{w}_1 = w_2$.
- If $v_1 > v_2$, then $\hat{p}_1 > \frac{1}{2}$.
- If $v_1 > v_2$, then $\hat{w}_1 < w_2$ at least if $|v_1 - v_2|$ is very small or big.

My intuition for results:
- Contestant 1 is more valuable as a contributor (as $v_1 > v_2$).
- Hence, she should be encouraged to use x_1, as all-pay investments are more conducive to large expenditures.
- This is achieved by making winner-pay inv. costly: $\hat{p}_1 > \frac{1}{2}$.
- To generate $\hat{p}_1 > \frac{1}{2}$, $v_1 > v_2$ is more than enough, so bias can be in favor of Contestant 2.
- Might not be robust.
Numerical example \(t = r = v_2 = w_2 = 1 \)

- Plot of \(\hat{p}_1 \) and \(\hat{w}_1 \) against \(v_1 \) for three different values of \(\alpha \): 0.9 (the blue, dotted curve), 0.5 (the green, dashed curve), and 0.1 (the red, solid curve).

(a) The high-valuation contestant’s probability of winning.

(b) The weight in the CSF that is assigned to the high-valuation contestant’s score.
Main results and contributions: (1/1)

1. The analytical approach (borrowing from producer theory):
 - Generality, tractability, and an existence condition.

2. A larger n leads to substitution away from all-pay investments.
 - But only if the elasticity of substitution is large enough.

3. Total expenditures always lower in hybrid contest than in all-pay.

4. Total exp’tures can be decreasing in n (also shown by Melkoyan).

5. Asym. contests (in terms of valuations and bias): Sharp predictions about relative size of investm’s and of expenditures.

6. Endogenous bias: High-valuation contestant more likely to win but the bias is against her (the latter might not be robust).
1. Sequential moves: first \((x_1, y_1)\), then \((x_2, y_2)\).

2. Applying the producer theory approach to other contest models with multiple influence channels.

3. Experimental testing.
 - Relatively sharp predictions.
 - But risk neutrality might be an issue?

4. Further work on asymmetric contests.
 - More than two contestants.
 - Can a contestant be hurt by a bias in favor of her?
 - Can a contestant benefit from an increase in rival’s valuation?

5. Contest design in broader settings.