Hybrid All-Pay and Winner-Pay Contests

Seminar at DICE in Düsseldorf, June 5, 2018

Johan N. M. Lagerlöf
Dept. of Economics, U. of Copenhagen
Email: johan.lagerlof@econ.ku.dk
Website: www.johanlagerlof.com

June 2, 2018

Introduction: What is a hybrid contest? (1/2)

A hybrid contest:

- In some economic, social, or political situation, each one of a number of economic agents try to win an indivisible prize.
- To increase her probability of winning, each contestant makes both all-pay investments and winner-pay investments.
- Example: The competitive bidding to host the Olympic games.
 - All-pay investments: Candidate cities spend money upfront, with the goal of persuading members of the IOC.
 - Winner-pay investments: A city commits to build new stadia and invest in safety arrangements if being awarded the Games.
- To fix ideas, consider the following formalization:
 - Contestant *i* chooses $x_i \ge 0$ and $y_i \ge 0$ to maximize

$$\pi_i = (v_i - y_i) p_i (s_1, s_2, \dots s_n) - x_i,$$

subject to $s_i = f(x_i, y_i)$.

Introduction: Other examples (2/2)

- Competition for a government contract or grant:
 - *All-pay investments*: Time/effort spent on preparing proposal.
 - Winner-pay investments: Commit to ambitious customer service.
- A political election:
 - All-pay investments: Campaign expenditures.
 - Winner-pay investments: Electoral promises (costly if they deviate from the politician's own ideal policy).
- Rent seeking to win monopoly rights of a regulated market:
 - All-pay investments: Ex ante bribes (how Tullock modeled it).
 - Winner-pay investments: Conditional bribes.
- Tullock's motivation:
 - Empirical studies in the 1950s: DWL appears to be tiny.
 - Tullock: Maybe a part of profits adds to the cost of monopoly.

Literature Review (1/2)

- Two earlier papers that model a hybrid contest:
 - Haan and Schonbeek (2003).
 - They assume Cobb-Douglas—which here is quite restrictive.
 - Melkoyan (2013).
 - CES but with $\sigma \ge 1$. Symmetric model. Hard to check SOC.
 - My analysis: (i) other approach which yields easy-to-check existence condition; (ii) assumes general production function and CSF; (iii) studies both symmetric and asymmetric models.
- Other contest models with more than one influence channel:
 - Sabotage in contests (improve own performance and sabotage the others performance): Konrad (2000), Chen (2003).
 - War and conflict (choice of production and appropriation): Hirschleifer (1991) and Skaperdas and Syroploulos (1997).
 - Multiple all-pay "arms" (maybe with different costs): Arbatskaya and Mialon (2010).

Literature Review (2/2)

- Multidimensional (procurement) auctions:
 - Che (2003), Branck (1997), Asker and Cantillon (2008).
 - Firms bid on both price and (many dimensions of) quality.
 - The components of each bid jointly determine a score.
 - Auctioneer chooses bidder with highest score.
 - Differences:
 - In their models, not both all-pay and winner-pay ingredients.
 - Not a probabilistic CSF.
- Optimal design of a research contest: Che and Gale (2003).
 - A principal wants to procure an innovation.
 - Fimrs choose both quality of innovation and the prize if winning.
 - Thus, effectively, both all-pay and winner-pay ingredients.
 - Differences: Not a probabilistic CSF (so mixed strategy eq.),
 linear production function, mechanism design approach.

A model of a hybrid contest (1/2)

- $n \ge 2$ contestants try to win an indivisible prize.
- Contestant i chooses $x_i \ge 0$ and $y_i \ge 0$ to maximize the following expected payoff:

$$\pi_i = (v_i - y_i) p_i(\mathbf{s}) - x_i$$
, subject to $s_i = f(x_i, y_i)$, where $\mathbf{s} = (s_1, s_2, \dots, s_n)$ and $s_i \ge 0$ is contestant *i*'s *score*.

- $\mathbf{v}_i > 0$ is i's valuation of the prize.
- **p**_i (**s**) is i's prob. of winning (or contest success function, CSF).
- \blacksquare x_i is the **all-pay investment**: paid whether i wins or not.
- \blacksquare y_i is the winner-pay investment: paid i.f.f. i wins.
- It is a one-shot game where the contestants choose their investments (x_i, y_i) simultaneously with each other.

A model of a hybrid contest (2/2)

- Assumptions about $p_i(\mathbf{s})$:
 - Twice continuously differentiable in its arguments.
 - Strictly increasing and strictly concave in s_i .
 - Strictly decreasing in s_j for all $j \neq i$.
 - The contest is won by someone: $\sum_{i=1}^{n} p_i(\mathbf{s}) = 1$.
 - Later I assume that $p_i(\mathbf{s})$ is homogeneous in \mathbf{s} .
- Assumptions about $f(x_i, y_i)$:
 - Thrice continuously differentiable in its arguments.
 - Strictly increasing in each of its arguments.
 - Strictly quasiconcave.
 - Homogeneous of degree t > 0: $\forall k > 0$ $f(kx_i, ky_i) = k^t f(x_i, y_i)$.
 - Inada conditions to rule out $x_i = 0$ or $y_i = 0$.
- Examples:

$$p_i(\mathbf{s}) = \frac{w_i s_i^r}{\sum_{i=1}^n w_i s_i^r}, \qquad f(x_i, y_i) = \left[\alpha x^{\frac{\sigma-1}{\sigma}} + (1-\alpha) y^{\frac{\sigma-1}{\sigma}}\right]^{\frac{t\sigma}{\sigma-1}}$$

Analysis (1/7)

- One possible approach:
 - Plug the production function into the CSF.
 - Take FOCs w.r.t. x_i and y_i .
 - Used by Haan and Schoonbeek (2003) and Melkoyan (2013), assuming Cobb-Douglas and CES, respectively.
- My approach: Solve for contestant *i*'s best reply in two steps:
 - 1 Compute the conditional factor demands.
 - That is, derive optimal x_i and y_i , given **s** (so also given s_i).
 - 2 Plug the factor demands into the payoff and then characterize contestant i's optimal score s_i (given s_{-i}).
- Important advantage: a single choice variable at 2, so easier to determine what conditions are required for equilibrium existence.

- Contestant i solves (for fixed p_i): $\min_{x_i,y_i} p_i y_i + x_i$, subject to $f(x_i,y_i) = s_i$.
- The first-order conditions (λ_i is the Lagrange multiplier):

$$\frac{\partial \mathcal{L}_{i}}{\partial x_{i}} = 1 - \lambda_{i} f_{1}\left(x_{i}, y_{i}\right) = 0, \qquad \frac{\partial \mathcal{L}_{i}}{\partial y_{i}} = p_{i} - \lambda_{i} f_{2}\left(x_{i}, y_{i}\right) = 0.$$

So, by combining the FOCs:

$$\frac{1}{p_i} = \frac{f_1\left(x_i, y_i\right)}{f_2\left(x_i, y_i\right)} \stackrel{\text{def}}{=} g\left(\frac{x_i}{y_i}\right) \Rightarrow x_i = y_i h\left(\frac{1}{p_i}\right),$$

where *h* is the inverse of *g* (i.e., $h \stackrel{\text{def}}{=} g^{-1}$).

■ By plugging back into $s_i = f(x_i, y_i)$ and rewriting, we obtain:

$$Y_i\left(s_i,p_i\right) = \left\lceil \frac{s_i}{f\left(h\left(1/p_i\right),1\right)} \right\rceil^{\frac{1}{t}}, \quad X_i\left(s_i,p_i\right) = Y_i\left(s_i,p_i\right)h\left(\frac{1}{p_i}\right).$$

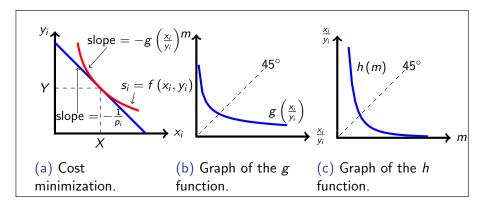
Contestant i's payoff: $\pi_i(\mathbf{s}) = p_i(\mathbf{s}) v_i - C_i[s_i, p_i(\mathbf{s})]$, where

$$C_i[s_i, p_i(\mathbf{s})] \stackrel{\text{def}}{=} p_i(\mathbf{s}) Y_i[s_i, p_i(\mathbf{s})] + X_i[s_i, p_i(\mathbf{s})].$$

- A Nash equilibrium of the hybrid contest:
 - A profile \mathbf{s}^* such that $\pi_i(\mathbf{s}^*) \geq \pi_i(s_i, \mathbf{s}_{-i}^*)$, all i and all $s_i \geq 0$.

Analysis (3/7)

The cost-minimization problem and the h function



Analysis (4/7)

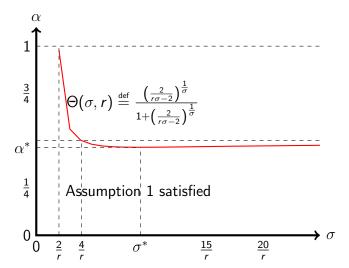
Equilibrium existence

Define the following elasticities:

- The elasticity of output w.r.t. x_i : $\eta\left(\frac{1}{p_i}\right) \stackrel{\text{def}}{=} \frac{f_1\left[h\left(\frac{1}{p_i}\right),1\right]h\left(\frac{1}{p_i}\right)}{f\left[h\left(\frac{1}{p_i}\right),1\right]}$.
- The elasticity of substitution: $\sigma\left(\frac{1}{p_i}\right) \stackrel{\text{def}}{=} -\frac{h'\left(\frac{1}{p_i}\right)\frac{1}{p_i}}{h\left(\frac{1}{p_i}\right)}$.
- The elasticity of the win probability w.r.t. s_i : ε_i (\mathbf{s}) $\stackrel{\text{def}}{=} \frac{\partial p_i}{\partial s_i} \frac{s_i}{p_i}$.
- We have that $\eta \in (0, t)$, $\sigma > 0$, and $\varepsilon_i \in (0, 1)$.
- **Assumption 1.** The production function and the CSF satisfy:
 - (i) $t \le 1$ and $\varepsilon_i(\mathbf{s}) \eta\left(\frac{1}{p_i}\right) \sigma\left(\frac{1}{p_i}\right) \le 2$ (for all p_i and \mathbf{s});
- **Proposition 1.** Suppose Assumption 1 is satisfied. Then there exists a pure strategy Nash equilibrium of the hybrid contest.

Assume a CES production function, t = 1, r < 1, and

$$p_i(\mathbf{s}) = rac{w_i s_i^r}{\sum_{j=1}^n w_j s_j^r}$$
 and $p_i(0, \cdots, 0) = rac{w_i}{\sum_{j=1}^n w_j}$.



Analysis (6/7)

■ To check the SOC with Melkoyan's analytical approach is cumbersome and in the end he relies on numerical simulations:

[...] one can demonstrate, after a series of tedious algebraic manipulations, that a player's payoff function is locally concave at the symmetric equilibrium candidate in (7) if and only if [large mathematical expression]. [...] Numerical simulations indicate that this inequality is violated only for extreme values of the parameters [...]. In addition to verifying the local second-order conditions, I have used numerical simulations to verify that the global second-order conditions are satisfied under a wide range of scenarios.

Characterization of equilibrium

- Recall: $\pi_i(\mathbf{s}) = p_i(\mathbf{s}) v_i C_i[s_i, p_i(\mathbf{s})].$
- The FOC (with an equality if $s_i > 0$):

$$\frac{\partial \pi_{i}\left(\mathbf{s}\right)}{\partial s_{i}} = \frac{\partial p_{i}\left(\mathbf{s}\right)}{\partial s_{i}}v_{i} - C_{1}\left(s_{i}, p_{i}\right) - C_{2}\left(s_{i}, p_{i}\right)\frac{\partial p_{i}\left(\mathbf{s}\right)}{\partial s_{i}} \leq 0.$$

■ Use Shephard's lemma, $C_2(s_i, p_i) = Y_i[s_i, p_i(\mathbf{s})]$:

$$\left[v_{i}-Y_{i}\left(s_{i},p_{i}\left(\mathbf{s}\right)\right)\right]\frac{\partial p_{i}\left(\mathbf{s}\right)}{\partial s_{i}}\leq C_{1}\left(s_{i},p_{i}\right),\tag{1}$$

with an equality if $s_i > 0$.

■ **Proposition 2.** Suppose Assumption 1 is satisfied. Then $\mathbf{s}^* = (s_1^*, \dots, s_n^*)$ is a pure strategy Nash equilibrium of the hybrid contest if and only if condition (1) holds, with equality if $s_i^* > 0$, for each contestant i.

A Symmetric Hybrid Contest (1/4)

Assumption 2. The CSF is symmetric and homogeneous of degree 0.

■ Note that, thanks to Assumption 2:

$$\frac{\partial p_i(s,s,\ldots,s)}{\partial s_i} = \frac{\widehat{\varepsilon}(n)}{ns}, \text{ where } \widehat{\varepsilon}(n) \stackrel{\text{\tiny def}}{=} \varepsilon_i (1,1,\ldots,1).$$

Use this in the FOC and impose symmetry:

$$(v-y^*)\frac{\widehat{\varepsilon}(n)}{ns^*} = C_1\left[s^*, \frac{1}{n}\right] = \frac{1}{ts^*}C\left[s^*, \frac{1}{n}\right] = \frac{1}{ts^*}\left[\frac{y^*}{n} + x^*\right]$$

- $\Leftrightarrow (v y^*) \, t \widehat{\varepsilon}(n) = y^* + n x^*$. And from before, $x^* = h(n) y^*$.

 The last equalities are linear in x^* and y^* , so easy to solve.
- **Proposition 3.** Within the family of sym. eq., there is a unique pure strategy equilibrium: $s^* = f[h(n), 1](y^*)^t$, $x^* = h(n)y^*$, and

$$y^* = \frac{t\widehat{\varepsilon}(n)v}{1 + nh(n) + t\widehat{\varepsilon}(n)}.$$

Proposition 4. Effect of more contestants on x^* and y^* :

$$\begin{split} \frac{\partial x^*}{\partial n} < 0 &\Leftrightarrow \sigma(n) > -\frac{n(n-2)h(n)-1}{(n-1)[1+t\widehat{\varepsilon}(n)]}, \\ &\frac{\partial y^*}{\partial n} > 0 &\Leftrightarrow \sigma(n) > \frac{n(n-2)h(n)-1}{(n-1)nh(n)}; \end{split}$$

and if $\sigma(n) \ge 1$, then necessarily $\frac{\partial x^*}{\partial n} < 0$ and $\frac{\partial y^*}{\partial n} > 0$.

- In order to understand the above:
 - More contestants means a lower probability of winning.
 - This lowers the relative cost of investing in y_i .
 - So whenever $\sigma(n)$ is sufficiently large, $\frac{\partial y^*}{\partial n} > 0$ and $\frac{\partial x^*}{\partial n} < 0$.
 - But if $\sigma(n)$ small, the derivatives must have the same sign. For:

$$\frac{\partial y^*}{\partial n} \frac{n}{y^*} = \sigma(n) + \frac{\partial x^*}{\partial n} \frac{n}{x^*} \qquad \text{(follows from } x^* = h(n)y^*\text{)}.$$

As $\sigma(n) \to 0$, the production function requires x_i and y_i to be used in fixed proportions (a Leontief production technology).

- The total amount of equilibrium expenditures in the symmetric hybrid model is defined as $R^{H} \stackrel{\text{def}}{=} nC\left[s^{*}, \frac{1}{n}\right]$.
- The corresponding amount in the all-pay contest: $R^{A} = t\widehat{\varepsilon}(n)v$.
- Proposition 5, part (a). In the symmetric model:

$$R^{\mathsf{H}} = (1 - \frac{y^*}{v})R^{\mathsf{A}} = \left[\frac{1}{v\left[1 + nh(n)\right]} + \frac{1}{R^{\mathsf{A}}}\right]^{-1}.$$

In particular, for any finite n, we have $R^{H} < R^{A}$.

- The payoff suggests the intuition: $\pi_i = (v_i y_i) p_i(\mathbf{s}) x_i$.
- **Proposition 5, part (b).** In the symmetric model, suppose $p_i(\mathbf{s}) = \phi(s_i) / \sum_{j=1}^n \phi(s_j)$, where ϕ is a strictly increasing and concave function satisfying $\phi(0) = 0$.
 - Then R^H is weakly increasing in n if and only if: (i)

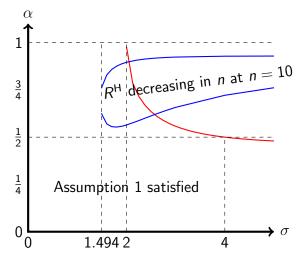
$$\sigma(n) \le 1 + \frac{4n}{tr(n-1)^2};\tag{2}$$

or (ii) inequality (2) is violated and $h(n) \notin (\Xi_L, \Xi_H)$. See figure!

A Symmetric Hybrid Contest (4/4)

Illustration of result (b)

■ Assume CES, t = 1, and n = 10.



Asymmetric Hybrid Contests (1/2)

- I assume n = 2 and I study three models:
 - The CSF is biased in favor of one contestant.
 - One contestant has a higher valuation than the other.
 - I also endogenize the degree of bias.
- **Assumption 3.** The CSF is given by

$$p_i(\mathbf{s}) = \frac{w_i s_i^r}{w_1 s_1^r + w_2 s_2^r}.$$

■ The following three equations define equilibrium values of p_1^* , y_1^* , and y_2^* :

$$y_i^* = \frac{rtp_i^*(1-p_i^*)v_i}{rtp_i^*(1-p_i^*)+p_i^*+h\left(\frac{1}{p_i^*}\right)}, \quad \text{for } i=1,2, \text{ and } \Upsilon(p_1^*)=0, \text{ where}$$

$$\Upsilon(\rho_1) \stackrel{\text{def}}{=} \frac{\frac{w_2 v_2''}{w_1 v_1'^t} \rho_1 f\left[h\left(\frac{1}{1-\rho_1}\right), 1\right]'}{\left[rt \rho_1 (1-\rho_1) + 1 - \rho_1 + h\left(\frac{1}{1-\rho_1}\right)\right]'^t} - \frac{(1-\rho_1) f\left[h\left(\frac{1}{\rho_1}\right), 1\right]'}{\left[rt \rho_1 (1-\rho_1) + \rho_1 + h\left(\frac{1}{\rho_1}\right)\right]'^t}.$$

■ The equilibrium is unique if $r\eta\left(\frac{1}{p_i}\right)\sigma\left(\frac{1}{p_i}\right) \leq 1$.

Asymmetric Hybrid Contests (2/4)

A Biased decision process $(w_1 \neq w_2 \text{ but } v_1 = v_2)$

- Among the results:
 - (a) $p_1^* > p_2^* \Leftrightarrow y_1^* < y_2^* \Leftrightarrow C(s_1^*, p_1^*) > C(s_2^*, p_2^*).$
 - **(b)** Evaluated at symmetry $(w_1 = w_2)$: $\frac{\partial p_1^*}{\partial w_1} > 0$,

$$\frac{\partial y_1^*}{\partial w_1} < 0, \quad \frac{\partial y_2^*}{\partial w_1} > 0, \quad \frac{\partial x_1^*}{\partial w_1} > 0 \Leftrightarrow \frac{\partial x_2^*}{\partial w_1} < 0 \Leftrightarrow \sigma(2) > \frac{2}{2 + rt}.$$

Different valuations ($v_1 \neq v_2$ but $w_1 = w_2$)

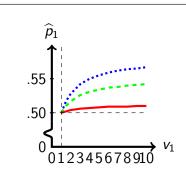
- Among the results:
 - (a) $p_1^* > p_2^* \Leftrightarrow \frac{y_1^*}{y_1} < \frac{y_2^*}{y_2}$.
 - **(b)** $v_1 y_1^* > v_2 y_2^* \Leftrightarrow C(s_1^*, p_1^*) > C(s_2^*, p_2^*).$

An Endogenous Bias (w_1 chosen, but $v_1 \ge v_2$ and w_2 fixed)

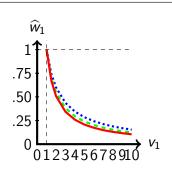
- Timing of events in the game:
 - 1 A principal chooses w_1 to maximize $R^H = C(s_1^*, p_1^*) + C(s_2^*, p_2^*)$.
 - 2 w_1 becomes common knowledge and the contestants interact as in the previous analysis.
- **Assumption 3.** The production function is of Cobb-Douglas form: $f(x_i, y_i) = x_i^{\alpha} y_i^{\beta}$, for $\alpha > 0$ and $\beta > 0$.
- Results: The equilibrium values of p_1 and w_1 satisfy:
 - If $v_1 = v_2$, then $\widehat{p}_1 = \frac{1}{2}$ and $\widehat{w}_1 = w_2$.
 - If $v_1 > v_2$, then $\hat{p}_1 > \frac{1}{2}$.
 - If $v_1 > v_2$, then $\widehat{w}_1 < w_2$ at least if $|v_1 v_2|$ is very small or big.
- My intuition for results:
 - Contestant 1 is more valuable as a contributor (as $v_1 > v_2$).
 - Hence, she should be encouraged to use x_1 , as all-pay investments are more conducive to large expenditures.
 - This is achieved by making winner-pay inv. costly: $\hat{p}_1 > \frac{1}{2}$.
 - To generate $\hat{p}_1 > \frac{1}{2}$, $v_1 > v_2$ is more than enough, so bias can be in favor of Contestant 2.
 - Might not be robust.

Numerical example ($t = r = v_2 = w_2 = 1$)

■ Plot of plot \widehat{p}_1 and \widehat{w}_1 against v_1 for three different values of α : 0.9 (the blue, dotted curve), 0.5 (the green, dashed curve), and 0.1 (the red, solid curve).



(a) The high-valuation contestant's probability of winning.



(b) The weight in the CSF that is assigned to the high-valuation contestant's score.

Main results and contributions: (1/1)

- The analytical approach (borrowing from producer theory):
 - → Generality, tractability, and an existence condition.
- $extbf{2}$ A larger n leads to substitution away from all-pay investments.
 - But only if the elasticity of substitution is large enough.
- 3 Total expenditures always lower in hybrid contest than in all-pay.
- **4** Total exp'tures can be decreasing in n (also shown by Melkoyan).
- 5 Asym. contests (in terms of valuations and bias): Sharp predictions about relative size of investm's and of expenditures.
- **6** Endogenous bias: High-valuation contestant more likely to win but the bias is against her (the latter might not be robust).

Possible avenues for future work (1/1)

- **1** Sequential moves: first (x_1, y_1) , then (x_2, y_2) .
- 2 Applying the producer theory approach to other contest models with multiple influence channels.
- Experimental testing.
 - Relatively sharp predictions.
 - But risk neutrality might be an issue?
- 4 Further work on asymmetric contests.
 - More than two contestants.
 - Can a contestant be hurt by a bias in favor of her?
 - Can a contestant benefit from an increase in rival's valuation?
- 5 Contest design in broader settings.