# Hybrid All-Pay and Winner-Pay Contests Seminar at DICE in Düsseldorf, June 5, 2018

Johan N. M. Lagerlöf Dept. of Economics, U. of Copenhagen Email: johan.lagerlof@econ.ku.dk Website: www.johanlagerlof.com

#### June 2, 2018

# Introduction: What is a hybrid contest? (1/2)

# A hybrid contest:

- In some economic, social, or political situation, each one of a number of economic agents try to win an indivisible prize.
- To increase her probability of winning, each contestant makes both **all-pay investments** and **winner-pay investments**.

Example: The competitive bidding to host the Olympic games.

- All-pay investments: Candidate cities spend money upfront, with the goal of persuading members of the IOC.
- Winner-pay investments: A city commits to build new stadia and invest in safety arrangements if being awarded the Games.
- To fix ideas, consider the following formalization:
  - Contestant *i* chooses  $x_i \ge 0$  and  $y_i \ge 0$  to maximize

$$\pi_i = (v_i - y_i) p_i (s_1, s_2, \dots s_n) - x_i,$$

subject to  $s_i = f(x_i, y_i)$ .

イロト イポト イヨト イヨ

# Introduction: What is a hybrid contest? (1/2)

# A hybrid contest:

- In some economic, social, or political situation, each one of a number of economic agents try to win an indivisible prize.
- To increase her probability of winning, each contestant makes both **all-pay investments** and **winner-pay investments**.

• Example: The competitive bidding to host the Olympic games.

- All-pay investments: Candidate cities spend money upfront, with the goal of persuading members of the IOC.
- Winner-pay investments: A city commits to build new stadia and invest in safety arrangements if being awarded the Games.

To fix ideas, consider the following formalization:

• Contestant *i* chooses  $x_i \ge 0$  and  $y_i \ge 0$  to maximize

$$\pi_i = (v_i - y_i) p_i (s_1, s_2, \dots s_n) - x_i,$$

subject to  $s_i = f(x_i, y_i)$ .

イロト イポト イヨト イヨ

# Introduction: What is a hybrid contest? (1/2)

# A hybrid contest:

- In some economic, social, or political situation, each one of a number of economic agents try to win an indivisible prize.
- To increase her probability of winning, each contestant makes both **all-pay investments** and **winner-pay investments**.

• Example: The competitive bidding to host the Olympic games.

- All-pay investments: Candidate cities spend money upfront, with the goal of persuading members of the IOC.
- Winner-pay investments: A city commits to build new stadia and invest in safety arrangements if being awarded the Games.
- To fix ideas, consider the following formalization:
  - Contestant *i* chooses  $x_i \ge 0$  and  $y_i \ge 0$  to maximize

$$\pi_i = (v_i - y_i) p_i (s_1, s_2, \dots s_n) - x_i,$$

subject to  $s_i = f(x_i, y_i)$ .

# Introduction: Other examples (2/2)

- Competition for a government contract or grant:
  - *All-pay investments*: Time/effort spent on preparing proposal.
  - *Winner-pay investments*: Commit to ambitious customer service.
- A political election:
  - All-pay investments: Campaign expenditures.
  - Winner-pay investments: Electoral promises (costly if they deviate from the politician's own ideal policy).
- Rent seeking to win monopoly rights of a regulated market:
  - *All-pay investments*: Ex ante bribes (how Tullock modeled it).
  - Winner-pay investments: Conditional bribes.
- Tullock's motivation:
  - Empirical studies in the 1950s: DWL appears to be tiny.
  - Tullock: Maybe a part of profits adds to the cost of monopoly.

# Literature Review (1/2)

Two earlier papers that model a hybrid contest:

- Haan and Schonbeek (2003).
  - They assume Cobb-Douglas—which here is quite restrictive.

### Melkoyan (2013).

- **CES** but with  $\sigma \ge 1$ . Symmetric model. Hard to check SOC.
- My analysis: (i) other approach which yields easy-to-check existence condition; (ii) assumes general production function and CSF; (iii) studies both symmetric and asymmetric models.

#### Other contest models with more than one influence channel:

- **Sabotage in contests** (improve own performance and sabotage the others performance): Konrad (2000), Chen (2003).
- War and conflict (choice of production and appropriation): Hirschleifer (1991) and Skaperdas and Syroploulos (1997).
- Multiple all-pay "arms" (maybe with different costs): Arbatskaya and Mialon (2010).

# Literature Review (1/2)

Two earlier papers that model a hybrid contest:

- Haan and Schonbeek (2003).
  - They assume Cobb-Douglas—which here is quite restrictive.

# Melkoyan (2013).

- **EXAMPLE** CES but with  $\sigma \geq 1$ . Symmetric model. Hard to check SOC.
- My analysis: (i) other approach which yields easy-to-check existence condition; (ii) assumes general production function and CSF; (iii) studies both symmetric and asymmetric models.

• Other contest models with more than one influence channel:

- **Sabotage in contests** (improve own performance and sabotage the others performance): Konrad (2000), Chen (2003).
- War and conflict (choice of production and appropriation): Hirschleifer (1991) and Skaperdas and Syroploulos (1997).
- Multiple all-pay "arms" (maybe with different costs): Arbatskaya and Mialon (2010).

# Literature Review (2/2)

### Multidimensional (procurement) auctions:

### • Che (2003), Branck (1997), Asker and Cantillon (2008).

- Firms bid on both price and (many dimensions of) quality.
- The components of each bid jointly determine a score.
- Auctioneer chooses bidder with highest score.

#### Differences:

- In their models, not both all-pay and winner-pay ingredients.
- Not a probabilistic CSF.

#### Optimal design of a research contest: Che and Gale (2003).

- A principal wants to procure an innovation.
- Fimrs choose both quality of innovation and the prize if winning.
- Thus, effectively, both all-pay and winner-pay ingredients
- Differences: Not a probabilistic CSF (so mixed strategy eq.), linear production function, mechanism design approach.

# Literature Review (2/2)

### Multidimensional (procurement) auctions:

# • Che (2003), Branck (1997), Asker and Cantillon (2008).

- Firms bid on both price and (many dimensions of) quality.
- The components of each bid jointly determine a score.
- Auctioneer chooses bidder with highest score.

#### Differences:

- In their models, not both all-pay and winner-pay ingredients.
- Not a probabilistic CSF.

### • Optimal design of a research contest: Che and Gale (2003).

- A principal wants to procure an innovation.
- Fimrs choose both quality of innovation and the prize if winning.
- Thus, effectively, both all-pay and winner-pay ingredients.
- Differences: Not a probabilistic CSF (so mixed strategy eq.), linear production function, mechanism design approach.

# A model of a hybrid contest (1/2)

- $n \ge 2$  contestants try to win an indivisible prize.
- Contestant *i* chooses x<sub>i</sub> ≥ 0 and y<sub>i</sub> ≥ 0 to maximize the following expected payoff:

$$\pi_i = (v_i - y_i) p_i(\mathbf{s}) - x_i, \qquad \text{subject to } s_i = f(x_i, y_i),$$

where  $\mathbf{s} = (s_1, s_2, \dots, s_n)$  and  $s_i \ge 0$  is contestant *i*'s *score*.

- $v_i > 0$  is *i*'s valuation of the prize.
- **p**<sub>*i*</sub>(**s**) is *i*'s prob. of winning (or contest success function, CSF).
- x<sub>i</sub> is the **all-pay investment**: paid whether i wins or not.
- *y<sub>i</sub>* is the **winner-pay investment**: paid i.f.f. *i* wins.
- It is a one-shot game where the contestants choose their investments (x<sub>i</sub>, y<sub>i</sub>) simultaneously with each other.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

# A model of a hybrid contest (2/2)

- Assumptions about  $p_i(\mathbf{s})$ :
  - Twice continuously differentiable in its arguments.
  - Strictly increasing and strictly concave in  $s_i$ .
  - Strictly decreasing in  $s_j$  for all  $j \neq i$ .
  - The contest is won by someone:  $\sum_{j=1}^{n} p_j(\mathbf{s}) = 1$ .
  - Later I assume that  $p_i(\mathbf{s})$  is homogeneous in  $\mathbf{s}$ .

• Assumptions about  $f(x_i, y_i)$ :

- Thrice continuously differentiable in its arguments.
- Strictly increasing in each of its arguments.
- Strictly quasiconcave.
- Homogeneous of degree t > 0:  $\forall k > 0$   $f(kx_i, ky_i) = k^t f(x_i, y_i)$ .
- Inada conditions to rule out  $x_i = 0$  or  $y_i = 0$ .

Examples:

$$p_i(\mathbf{s}) = \frac{W_i s_i^r}{\sum_{j=1}^n W_j s_j^r}, \qquad f(x_i, y_i) = \left[\alpha x^{\frac{\sigma-1}{\sigma}} + (1-\alpha) y^{\frac{\sigma-1}{\sigma}}\right]^{\frac{t\sigma}{\sigma-1}}$$

# A model of a hybrid contest (2/2)

- Assumptions about  $p_i(\mathbf{s})$ :
  - Twice continuously differentiable in its arguments.
  - Strictly increasing and strictly concave in  $s_i$ .
  - Strictly decreasing in  $s_j$  for all  $j \neq i$ .
  - The contest is won by someone:  $\sum_{j=1}^{n} p_j(\mathbf{s}) = 1$ .
  - Later I assume that  $p_i(\mathbf{s})$  is homogeneous in  $\mathbf{s}$ .
- Assumptions about  $f(x_i, y_i)$ :
  - Thrice continuously differentiable in its arguments.
  - Strictly increasing in each of its arguments.
  - Strictly quasiconcave.
  - Homogeneous of degree t > 0:  $\forall k > 0$   $f(kx_i, ky_i) = k^t f(x_i, y_i)$ .
  - Inada conditions to rule out  $x_i = 0$  or  $y_i = 0$ .

Examples:

$$p_i(\mathbf{s}) = \frac{W_i S_i^r}{\sum_{j=1}^n W_j S_j^r}, \qquad f(x_i, y_i) = \left[\alpha x^{\frac{\sigma-1}{\sigma}} + (1-\alpha) y^{\frac{\sigma-1}{\sigma}}\right]^{\frac{t\sigma}{\sigma-1}}$$

# A model of a hybrid contest (2/2)

- Assumptions about  $p_i(\mathbf{s})$ :
  - Twice continuously differentiable in its arguments.
  - Strictly increasing and strictly concave in  $s_i$ .
  - Strictly decreasing in  $s_j$  for all  $j \neq i$ .
  - The contest is won by someone:  $\sum_{j=1}^{n} p_j(\mathbf{s}) = 1$ .
  - Later I assume that  $p_i(\mathbf{s})$  is homogeneous in  $\mathbf{s}$ .
- Assumptions about  $f(x_i, y_i)$ :
  - Thrice continuously differentiable in its arguments.
  - Strictly increasing in each of its arguments.
  - Strictly quasiconcave.
  - Homogeneous of degree t > 0:  $\forall k > 0$   $f(kx_i, ky_i) = k^t f(x_i, y_i)$ .
  - Inada conditions to rule out  $x_i = 0$  or  $y_i = 0$ .
- Examples:

$$p_i(\mathbf{s}) = \frac{w_i s_i^r}{\sum_{j=1}^n w_j s_j^r}, \qquad f(x_i, y_i) = \left[\alpha x^{\frac{\sigma-1}{\sigma}} + (1-\alpha) y^{\frac{\sigma-1}{\sigma}}\right]^{\frac{t\sigma}{\sigma-1}}$$

# Analysis (1/7)

#### • One possible approach:

- Plug the production function into the CSF.
- Take FOCs w.r.t.  $x_i$  and  $y_i$ .
- Used by Haan and Schoonbeek (2003) and Melkoyan (2013), assuming Cobb-Douglas and CES, respectively.

My approach: Solve for contestant *i*'s best reply in two steps:
 Compute the conditional factor demands

**That is, derive optimal**  $x_i$  and  $y_i$ , given **s** (so also given  $s_i$ ).

- Plug the factor demands into the payoff and then characterize contestant *i*'s optimal score s<sub>i</sub> (given s<sub>-i</sub>).
- Important advantage: a single choice variable at 2, so easier to determine what conditions are required for equilibrium existence.

ヘロト ヘヨト ヘヨト

# Analysis (1/7)

### • One possible approach:

- Plug the production function into the CSF.
- **Take FOCs w.r.t.**  $x_i$  and  $y_i$ .
- Used by Haan and Schoonbeek (2003) and Melkoyan (2013), assuming Cobb-Douglas and CES, respectively.
- My approach: Solve for contestant *i*'s best reply in two steps:
  - **1** Compute the conditional factor demands.
    - **That is, derive optimal**  $x_i$  and  $y_i$ , given **s** (so also given  $s_i$ ).
  - Plug the factor demands into the payoff and then characterize contestant *i*'s optimal score s<sub>i</sub> (given s<sub>-i</sub>).
- Important advantage: a single choice variable at 2, so easier to determine what conditions are required for equilibrium existence.

ヘロト ヘ通ト ヘヨト ヘヨト

- Contestant *i* solves (for fixed  $p_i$ ): min<sub> $x_i,y_i</sub> <math>p_i y_i + x_i$ , subject to  $f(x_i, y_i) = s_i$ .</sub>
- The first-order conditions ( $\lambda_i$  is the Lagrange multiplier):

$$\frac{\partial \mathcal{L}_i}{\partial x_i} = 1 - \lambda_i f_1(x_i, y_i) = 0, \qquad \frac{\partial \mathcal{L}_i}{\partial y_i} = p_i - \lambda_i f_2(x_i, y_i) = 0.$$

$$\frac{1}{p_i} = \frac{f_1(x_i, y_i)}{f_2(x_i, y_i)} \stackrel{\text{def}}{=} g\left(\frac{x_i}{y_i}\right) \Rightarrow x_i = y_i h\left(\frac{1}{p_i}\right),$$

where *h* is the inverse of *g* (i.e.,  $h \stackrel{\text{def}}{=} g^{-1}$ ).

By plugging back into  $s_i = f(x_i, y_i)$  and rewriting, we obtain:

$$Y_{i}(s_{i},p_{i})=\left[\frac{s_{i}}{f\left(h\left(1/p_{i}\right),1\right)}\right]^{\frac{1}{t}}, \quad X_{i}(s_{i},p_{i})=Y_{i}(s_{i},p_{i})h\left(\frac{1}{p_{i}}\right).$$

• Contestant *i*'s payoff:  $\pi_i(\mathbf{s}) = p_i(\mathbf{s}) v_i - C_i[s_i, p_i(\mathbf{s})]$ , where  $C_i[s_i, p_i(\mathbf{s})] \stackrel{\text{def}}{=} p_i(\mathbf{s}) Y_i[s_i, p_i(\mathbf{s})] + X_i[s_i, p_i(\mathbf{s})]$ 

• A Nash equilibrium of the hybrid contest:

- Contestant *i* solves (for fixed  $p_i$ ): min<sub> $x_i,y_i</sub> <math>p_i y_i + x_i$ , subject to  $f(x_i, y_i) = s_i$ .</sub>
- The first-order conditions ( $\lambda_i$  is the Lagrange multiplier):

$$\frac{\partial \mathcal{L}_i}{\partial x_i} = 1 - \lambda_i f_1(x_i, y_i) = 0, \qquad \frac{\partial \mathcal{L}_i}{\partial y_i} = p_i - \lambda_i f_2(x_i, y_i) = 0.$$

$$\frac{1}{p_i} = \frac{f_1(x_i, y_i)}{f_2(x_i, y_i)} \stackrel{\text{def}}{=} g\left(\frac{x_i}{y_i}\right) \Rightarrow x_i = y_i h\left(\frac{1}{p_i}\right)$$

where *h* is the inverse of *g* (i.e.,  $h \stackrel{\text{def}}{=} g^{-1}$ ).

By plugging back into  $s_i = f(x_i, y_i)$  and rewriting, we obtain:

$$Y_{i}\left(s_{i}, p_{i}\right) = \left[\frac{s_{i}}{f\left(h\left(1/p_{i}\right), 1\right)}\right]^{\frac{1}{t}}, \quad X_{i}\left(s_{i}, p_{i}\right) = Y_{i}\left(s_{i}, p_{i}\right)h\left(\frac{1}{p_{i}}\right).$$

Contestant *i*'s payoff:  $\pi_i(\mathbf{s}) = p_i(\mathbf{s}) v_i - C_i[s_i, p_i(\mathbf{s})]$ , where  $C_i[s_i, p_i(\mathbf{s})] \stackrel{\text{def}}{=} p_i(\mathbf{s}) Y_i[s_i, p_i(\mathbf{s})] + X_i[s_i, p_i(\mathbf{s})]$ 

• A Nash equilibrium of the hybrid contest:

- Contestant *i* solves (for fixed  $p_i$ ): min<sub> $x_i,y_i</sub> <math>p_i y_i + x_i$ , subject to  $f(x_i, y_i) = s_i$ .</sub>
- The first-order conditions ( $\lambda_i$  is the Lagrange multiplier):

$$\frac{\partial \mathcal{L}_i}{\partial x_i} = 1 - \lambda_i f_1(x_i, y_i) = 0, \qquad \frac{\partial \mathcal{L}_i}{\partial y_i} = p_i - \lambda_i f_2(x_i, y_i) = 0.$$

$$\frac{1}{p_i} = \frac{f_1(x_i, y_i)}{f_2(x_i, y_i)} \stackrel{\text{def}}{=} g\left(\frac{x_i}{y_i}\right) \Rightarrow x_i = y_i h\left(\frac{1}{p_i}\right).$$

where *h* is the inverse of *g* (i.e.,  $h \stackrel{\text{def}}{=} g^{-1}$ ).

By plugging back into  $s_i = f(x_i, y_i)$  and rewriting, we obtain:

$$Y_{i}\left(s_{i}, p_{i}\right) = \left[\frac{s_{i}}{f\left(h\left(1/p_{i}\right), 1\right)}\right]^{\frac{1}{t}}, \quad X_{i}\left(s_{i}, p_{i}\right) = Y_{i}\left(s_{i}, p_{i}\right)h\left(\frac{1}{p_{i}}\right).$$

Contestant *i*'s payoff:  $\pi_i(\mathbf{s}) = p_i(\mathbf{s}) V_i - C_i[s_i, p_i(\mathbf{s})]$ , where

• A Nash equilibrium of the hybrid contest:

- Contestant *i* solves (for fixed  $p_i$ ): min<sub> $x_i,y_i</sub> <math>p_i y_i + x_i$ , subject to  $f(x_i, y_i) = s_i$ .</sub>
- The first-order conditions ( $\lambda_i$  is the Lagrange multiplier):

$$\frac{\partial \mathcal{L}_i}{\partial x_i} = 1 - \lambda_i f_1(x_i, y_i) = 0, \qquad \frac{\partial \mathcal{L}_i}{\partial y_i} = p_i - \lambda_i f_2(x_i, y_i) = 0.$$

$$\frac{1}{p_i} = \frac{f_1(x_i, y_i)}{f_2(x_i, y_i)} \stackrel{\text{def}}{=} g\left(\frac{x_i}{y_i}\right) \Rightarrow x_i = y_i h\left(\frac{1}{p_i}\right)$$

where *h* is the inverse of *g* (i.e.,  $h \stackrel{\text{def}}{=} g^{-1}$ )

By plugging back into  $s_i = f(x_i, y_i)$  and rewriting, we obtain:

$$Y_{i}\left(s_{i}, p_{i}\right) = \left[\frac{s_{i}}{f\left(h\left(1/p_{i}\right), 1\right)}\right]^{\frac{1}{t}}, \quad X_{i}\left(s_{i}, p_{i}\right) = Y_{i}\left(s_{i}, p_{i}\right)h\left(\frac{1}{p_{i}}\right).$$

Contestant *i*'s payoff:  $\pi_i(\mathbf{s}) = p_i(\mathbf{s}) v_i - C_i[s_i, p_i(\mathbf{s})]$ , where

A Nash equilibrium of the hybrid contest:

- Contestant *i* solves (for fixed  $p_i$ ):  $\min_{x_i, y_i} p_i y_i + x_i$ , subject to  $f(x_i, y_i) = s_i$ .
- The first-order conditions ( $\lambda_i$  is the Lagrange multiplier):

$$\frac{\partial \mathcal{L}_i}{\partial x_i} = 1 - \lambda_i f_1(x_i, y_i) = 0, \qquad \frac{\partial \mathcal{L}_i}{\partial y_i} = p_i - \lambda_i f_2(x_i, y_i) = 0.$$

$$\frac{1}{p_i} = \frac{f_1(x_i, y_i)}{f_2(x_i, y_i)} \stackrel{\text{def}}{=} g\left(\frac{x_i}{y_i}\right) \Rightarrow x_i = y_i h\left(\frac{1}{p_i}\right),$$

where *h* is the inverse of *g* (i.e.,  $h \stackrel{\text{def}}{=} g^{-1}$ ).

By plugging back into  $s_i = f(x_i, y_i)$  and rewriting, we obtain:

$$Y_{i}\left(s_{i}, p_{i}\right) = \left[\frac{s_{i}}{f\left(h\left(1/p_{i}\right), 1\right)}\right]^{\frac{1}{t}}, \quad X_{i}\left(s_{i}, p_{i}\right) = Y_{i}\left(s_{i}, p_{i}\right)h\left(\frac{1}{p_{i}}\right).$$

Contestant *i*'s payoff:  $\pi_i(\mathbf{s}) = p_i(\mathbf{s}) v_i - C_i[s_i, p_i(\mathbf{s})]$ , where

 $C_{i}[s_{i}, p_{i}(\mathbf{s})] \stackrel{\text{def}}{=} p_{i}(\mathbf{s}) Y_{i}[s_{i}, p_{i}(\mathbf{s})] + X_{i}[s_{i}, p_{i}(\mathbf{s})]$ 

• A Nash equilibrium of the hybrid contest:

- Contestant *i* solves (for fixed  $p_i$ ): min<sub> $x_i,y_i</sub> <math>p_i y_i + x_i$ , subject to  $f(x_i, y_i) = s_i$ .</sub>
- The first-order conditions ( $\lambda_i$  is the Lagrange multiplier):

$$\frac{\partial \mathcal{L}_i}{\partial x_i} = 1 - \lambda_i f_1(x_i, y_i) = 0, \qquad \frac{\partial \mathcal{L}_i}{\partial y_i} = p_i - \lambda_i f_2(x_i, y_i) = 0.$$

$$\frac{1}{p_i} = \frac{f_1(x_i, y_i)}{f_2(x_i, y_i)} \stackrel{\text{def}}{=} g\left(\frac{x_i}{y_i}\right) \Rightarrow x_i = y_i h\left(\frac{1}{p_i}\right),$$

where *h* is the inverse of *g* (i.e.,  $h \stackrel{\text{def}}{=} g^{-1}$ ).

By plugging back into  $s_i = f(x_i, y_i)$  and rewriting, we obtain:

$$Y_{i}(s_{i},p_{i}) = \left[\frac{s_{i}}{f(h(1/p_{i}),1)}\right]^{\frac{1}{t}}, \quad X_{i}(s_{i},p_{i}) = Y_{i}(s_{i},p_{i})h\left(\frac{1}{p_{i}}\right)$$

• Contestant *i*'s payoff:  $\pi_i(\mathbf{s}) = p_i(\mathbf{s}) v_i - C_i[s_i, p_i(\mathbf{s})]$ , where  $C_i[s_i, p_i(\mathbf{s})] \stackrel{\text{def}}{=} p_i(\mathbf{s}) Y_i[s_i, p_i(\mathbf{s})] + X_i[s_i, p_i(\mathbf{s})]$ .

A Nash equilibrium of the hybrid contest:

• A profile **s**<sup>\*</sup> such that  $\pi_i(\mathbf{s}^*) \ge \pi_i(s_i, \mathbf{s}^*_{-\mathbf{i}})$ , all i and all  $s_i \ge 0$ 

# Analysis (3/7)

#### The cost-minimization problem and the *h* function



Define the following elasticities:

• The elasticity of output w.r.t.  $x_i$ :  $\eta\left(\frac{1}{p_i}\right) \stackrel{\text{def}}{=} \frac{f_1\left[h\left(\frac{1}{p_i}\right), 1\right]h\left(\frac{1}{p_i}\right)}{f\left[h\left(\frac{1}{p_i}\right), 1\right]}$ .

• The elasticity of substitution:  $\sigma\left(\frac{1}{p_i}\right) \stackrel{\text{\tiny def}}{=} -\frac{h'\left(\frac{1}{p_i}\right)\frac{1}{p_i}}{h\left(\frac{1}{p_i}\right)}$ .

The elasticity of the win probability w.r.t. s<sub>i</sub>: ε<sub>i</sub> (s) <sup>def</sup> ∂p<sub>i</sub> s<sub>i</sub>/∂s<sub>i</sub> p<sub>i</sub>.
 We have that η ∈ (0, t), σ > 0, and ε<sub>i</sub> ∈ (0, 1).

**Assumption 1.** The production function and the CSF satisfy: (i)  $t \le 1$  and  $\varepsilon_i(\mathbf{s}) \eta\left(\frac{1}{p_i}\right) \sigma\left(\frac{1}{p_i}\right) \le 2$  (for all  $p_i$  and  $\mathbf{s}$ );

Proposition 1. Suppose Assumption 1 is satisfied. Then there
exists a pure strategy Nash equilibrium of the hybrid contest.

Define the following elasticities:

• The elasticity of output w.r.t.  $x_i$ :  $\eta\left(\frac{1}{p_i}\right) \stackrel{\text{def}}{=} \frac{f_1\left[h\left(\frac{1}{p_i}\right), 1\right]h\left(\frac{1}{p_i}\right)}{f\left[h\left(\frac{1}{p_i}\right), 1\right]}$ .

• The elasticity of substitution:  $\sigma\left(\frac{1}{p_i}\right) \stackrel{\text{def}}{=} -\frac{h'\left(\frac{1}{p_i}\right)\frac{1}{p_i}}{h\left(\frac{1}{p_i}\right)}$ .

The elasticity of the win probability w.r.t. s<sub>i</sub>: ε<sub>i</sub> (s) <sup>def</sup> ∂ p<sub>i</sub> s<sub>i</sub> / ∂s<sub>i</sub> ρ<sub>i</sub>.
 We have that η ∈ (0, t), σ > 0, and ε<sub>i</sub> ∈ (0, 1).

**Assumption 1.** The production function and the CSF satisfy: (i)  $t \le 1$  and  $\varepsilon_i(\mathbf{s}) \eta\left(\frac{1}{p_i}\right) \sigma\left(\frac{1}{p_i}\right) \le 2$  (for all  $p_i$  and  $\mathbf{s}$ );

Proposition 1. Suppose Assumption 1 is satisfied. Then there
exists a pure strategy Nash equilibrium of the hybrid contest.

Define the following elasticities:

The elasticity of output w.r.t. x<sub>i</sub>: η (1/p<sub>i</sub>) = f\_1[h(1/p<sub>i</sub>),1]h(1/p<sub>i</sub>))/f[h(1/p<sub>i</sub>),1].
 The elasticity of substitution: σ (1/p<sub>i</sub>) = -h'(1/p<sub>i</sub>)/1/h(1/p<sub>i</sub>).

The elasticity of the win probability w.r.t. s<sub>i</sub>: ε<sub>i</sub> (s) <sup>def</sup> ∂p<sub>i</sub> s<sub>i</sub> / ∂s<sub>i</sub> p<sub>i</sub>.
 We have that η ∈ (0, t), σ > 0, and ε<sub>i</sub> ∈ (0, 1).

Assumption 1. The production function and the CSF satisfy:

 (i) t ≤ 1 and ε<sub>i</sub>(s) η (1/p<sub>i</sub>) σ (1/p<sub>i</sub>) ≤ 2
 (for all p<sub>i</sub> and s);

 Proposition 1. Suppose Assumption 1 is satisfied. Then there

exists a pure strategy Nash equilibrium of the hybrid contest.

Define the following elasticities:

The elasticity of output w.r.t. x<sub>i</sub>: η (1/p<sub>i</sub>) = f<sub>1</sub>[h(1/p<sub>i</sub>),1]h(1/p<sub>i</sub>)/f[h(1/p<sub>i</sub>),1].
 The elasticity of substitution: σ (1/p<sub>i</sub>) = -h'(1/p<sub>i</sub>)1/p<sub>i</sub>/h(1/q<sub>i</sub>).

- The elasticity of the win probability w.r.t. s<sub>i</sub>: ε<sub>i</sub> (s) <sup>def</sup> ∂ p<sub>i</sub> s<sub>i</sub> / ∂s<sub>i</sub> ρ<sub>i</sub>.
   We have that η ∈ (0, t), σ > 0, and ε<sub>i</sub> ∈ (0, 1).
- Assumption 1. The production function and the CSF satisfy: (i)  $t \le 1$  and  $\varepsilon_i(\mathbf{s}) \eta\left(\frac{1}{p_i}\right) \sigma\left(\frac{1}{p_i}\right) \le 2$  (for all  $p_i$  and  $\mathbf{s}$ );
- Proposition 1. Suppose Assumption 1 is satisfied. Then there exists a pure strategy Nash equilibrium of the hybrid contest.

Assume a CES production function, t = 1,  $r \le 1$ , and



To check the SOC with Melkoyan's analytical approach is cumbersome and in the end he relies on numerical simulations:

[...] one can demonstrate, after a series of tedious algebraic manipulations, that a player's payoff function is locally concave at the symmetric equilibrium candidate in (7) if and only if [large mathematical expression]. [...] Numerical simulations indicate that this inequality is violated only for extreme values of the parameters [...]. In addition to verifying the local second-order conditions, I have used numerical simulations to verify that the global second-order conditions are satisfied under a wide range of scenarios.

イロト イポト イヨト イヨト 二日

Recall: 
$$\pi_i(\mathbf{s}) = p_i(\mathbf{s}) v_i - C_i[s_i, p_i(\mathbf{s})].$$

• The FOC (with an equality if  $s_i > 0$ ):

$$\frac{\partial \pi_{i}\left(\mathbf{s}\right)}{\partial s_{i}}=\frac{\partial p_{i}\left(\mathbf{s}\right)}{\partial s_{i}}v_{i}-C_{1}\left(s_{i},p_{i}\right)-C_{2}\left(s_{i},p_{i}\right)\frac{\partial p_{i}\left(\mathbf{s}\right)}{\partial s_{i}}\leq0.$$

• Use Shephard's lemma,  $C_2(s_i, p_i) = Y_i[s_i, p_i(\mathbf{s})]$ :

$$\left[v_{i}-Y_{i}\left(s_{i},p_{i}\left(\mathbf{s}\right)\right)\right]\frac{\partial p_{i}\left(\mathbf{s}\right)}{\partial s_{i}}\leq C_{1}\left(s_{i},p_{i}\right),$$
(1)

June 5, 2018

14 / 24

with an equality if  $s_i > 0$ .

Proposition 2. Suppose Assumption 1 is satisfied. Then
 s<sup>\*</sup> = (s<sub>1</sub><sup>\*</sup>,..., s<sub>n</sub><sup>\*</sup>) is a pure strategy Nash equilibrium of the hybrid contest if and only if condition (1) holds, with equality if s<sub>i</sub><sup>\*</sup> > 0, for each contestant *i*.

- **Recall:**  $\pi_i(\mathbf{s}) = p_i(\mathbf{s}) v_i C_i[s_i, p_i(\mathbf{s})].$
- The FOC (with an equality if  $s_i > 0$ ):

$$\frac{\partial \pi_{i}\left(\mathbf{s}\right)}{\partial s_{i}}=\frac{\partial p_{i}\left(\mathbf{s}\right)}{\partial s_{i}}v_{i}-C_{1}\left(s_{i},p_{i}\right)-C_{2}\left(s_{i},p_{i}\right)\frac{\partial p_{i}\left(\mathbf{s}\right)}{\partial s_{i}}\leq0.$$

• Use Shephard's lemma,  $C_2(s_i, p_i) = Y_i[s_i, p_i(\mathbf{s})]$ :

$$\left[v_{i}-Y_{i}\left(s_{i},p_{i}\left(\mathbf{s}\right)\right)\right]\frac{\partial p_{i}\left(\mathbf{s}\right)}{\partial s_{i}}\leq C_{1}\left(s_{i},p_{i}\right),\tag{1}$$

with an equality if  $s_i > 0$ .

Proposition 2. Suppose Assumption 1 is satisfied. Then
 s\* = (s<sub>1</sub>\*,..., s<sub>n</sub>\*) is a pure strategy Nash equilibrium of the hybrid contest if and only if condition (1) holds, with equality if s<sub>i</sub>\* > 0, for each contestant *i*.

- **Recall:**  $\pi_i(\mathbf{s}) = p_i(\mathbf{s}) v_i C_i[s_i, p_i(\mathbf{s})].$
- The FOC (with an equality if  $s_i > 0$ ):

$$\frac{\partial \pi_{i}\left(\mathbf{s}\right)}{\partial s_{i}}=\frac{\partial p_{i}\left(\mathbf{s}\right)}{\partial s_{i}}v_{i}-C_{1}\left(s_{i},p_{i}\right)-C_{2}\left(s_{i},p_{i}\right)\frac{\partial p_{i}\left(\mathbf{s}\right)}{\partial s_{i}}\leq0.$$

• Use Shephard's lemma,  $C_2(s_i, p_i) = Y_i[s_i, p_i(\mathbf{s})]$ :

$$\left[v_{i}-Y_{i}\left(s_{i},p_{i}\left(\mathbf{s}\right)\right)\right]\frac{\partial p_{i}\left(\mathbf{s}\right)}{\partial s_{i}}\leq C_{1}\left(s_{i},p_{i}\right),$$
(1)

with an equality if  $s_i > 0$ .

Proposition 2. Suppose Assumption 1 is satisfied. Then
 s\* = (s<sub>1</sub>\*,..., s<sub>n</sub>\*) is a pure strategy Nash equilibrium of the hybrid contest if and only if condition (1) holds, with equality if s<sub>i</sub>\* > 0, for each contestant *i*.

Recall: 
$$\pi_i(\mathbf{s}) = p_i(\mathbf{s}) v_i - C_i[s_i, p_i(\mathbf{s})].$$

• The FOC (with an equality if  $s_i > 0$ ):

$$\frac{\partial \pi_{i}\left(\mathbf{s}\right)}{\partial s_{i}}=\frac{\partial p_{i}\left(\mathbf{s}\right)}{\partial s_{i}}v_{i}-C_{1}\left(s_{i},p_{i}\right)-C_{2}\left(s_{i},p_{i}\right)\frac{\partial p_{i}\left(\mathbf{s}\right)}{\partial s_{i}}\leq0.$$

Use Shephard's lemma,  $C_2(s_i, p_i) = Y_i[s_i, p_i(\mathbf{s})]$ :

$$\left[\mathbf{v}_{i}-Y_{i}\left(s_{i},p_{i}\left(\mathbf{s}\right)\right)\right]\frac{\partial p_{i}\left(\mathbf{s}\right)}{\partial s_{i}}\leq C_{1}\left(s_{i},p_{i}\right), \tag{1}$$

#### with an equality if $s_i > 0$ .

Proposition 2. Suppose Assumption 1 is satisfied. Then
 s\* = (s<sub>1</sub>\*,...,s<sub>n</sub>\*) is a pure strategy Nash equilibrium of the hybrid contest if and only if condition (1) holds, with equality if s<sub>i</sub>\* > 0, for each contestant *i*.

• Recall: 
$$\pi_i(\mathbf{s}) = p_i(\mathbf{s}) v_i - C_i[s_i, p_i(\mathbf{s})].$$

• The FOC (with an equality if  $s_i > 0$ ):

$$\frac{\partial \pi_{i}\left(\mathbf{s}\right)}{\partial s_{i}}=\frac{\partial p_{i}\left(\mathbf{s}\right)}{\partial s_{i}}v_{i}-C_{1}\left(s_{i},p_{i}\right)-C_{2}\left(s_{i},p_{i}\right)\frac{\partial p_{i}\left(\mathbf{s}\right)}{\partial s_{i}}\leq0.$$

• Use Shephard's lemma,  $C_2(s_i, p_i) = Y_i[s_i, p_i(\mathbf{s})]$ :

$$\left[\mathbf{v}_{i}-Y_{i}\left(\mathbf{s}_{i},\mathbf{p}_{i}\left(\mathbf{s}\right)\right)\right]\frac{\partial \mathbf{p}_{i}\left(\mathbf{s}\right)}{\partial \mathbf{s}_{i}}\leq C_{1}\left(\mathbf{s}_{i},\mathbf{p}_{i}\right), \tag{1}$$

with an equality if  $s_i > 0$ .

Proposition 2. Suppose Assumption 1 is satisfied. Then
 s<sup>\*</sup> = (s<sup>\*</sup><sub>1</sub>,..., s<sup>\*</sup><sub>n</sub>) is a pure strategy Nash equilibrium of the hybrid contest if and only if condition (1) holds, with equality if s<sup>\*</sup><sub>i</sub> > 0, for each contestant *i*.

# A Symmetric Hybrid Contest (1/4)

Assumption 2. The CSF is symmetric and homogeneous of degree 0.Note that, thanks to Assumption 2:

 $\frac{\partial p_i(s, s, \dots, s)}{\partial s_i} = \frac{\widehat{\varepsilon}(n)}{ns}, \text{ where } \widehat{\varepsilon}(n) \stackrel{\text{def}}{=} \varepsilon_i (1, 1, \dots, 1).$   $\blacksquare \text{ Use this in the FOC and impose symmetry:}$   $(v - y^*) \frac{\widehat{\varepsilon}(n)}{ns^*} = C_1 \left[ s^*, \frac{1}{n} \right] = \frac{1}{ts^*} C \left[ s^*, \frac{1}{n} \right] = \frac{1}{ts^*} \left[ \frac{y^*}{n} + x^* \right]$   $\Leftrightarrow (v - y^*) t\widehat{\varepsilon}(n) = y^* + nx^*. \text{ And from before, } x^* = h(n)y^*.$   $\blacksquare \text{ The last equalities are linear in } x^* \text{ and } y^*, \text{ so easy to solve.}$   $\blacksquare \text{$ **Proposition 3.**Within the family of sym. eq., there is a unique set of the set of

pure strategy equilibrium:  $s^* = f[h(n),1]\left(y^*
ight)^t$ ,  $x^* = h(n)y^*$ , and

$$y^* = \frac{t\widehat{\varepsilon}(n)v}{1 + nh(n) + t\widehat{\varepsilon}(n)}.$$

# A Symmetric Hybrid Contest (1/4)

Assumption 2. The CSF is symmetric and homogeneous of degree 0.Note that, thanks to Assumption 2:

$$\frac{\partial p_i(s, s, \dots, s)}{\partial s_i} = \frac{\widehat{\varepsilon}(n)}{ns}, \text{ where } \widehat{\varepsilon}(n) \stackrel{\text{def}}{=} \varepsilon_i (1, 1, \dots, 1).$$
Use this in the FOC and impose symmetry:

$$(v - y^*)\frac{\widehat{\varepsilon}(n)}{ns^*} = C_1\left[s^*, \frac{1}{n}\right] = \frac{1}{ts^*}C\left[s^*, \frac{1}{n}\right] = \frac{1}{ts^*}\left[\frac{y^*}{n} + x^*\right]$$

 $\Leftrightarrow (v - y^*) t\widehat{\varepsilon}(n) = y^* + nx^*.$  And from before,  $x^* = h(n)y^*.$ The last equalities are linear in  $x^*$  and  $y^*$ , so easy to solve.

**Proposition 3.** Within the family of sym. eq., there is a unique pure strategy equilibrium:  $s^* = f[h(n), 1] (y^*)^t$ ,  $x^* = h(n)y^*$ , and

$$y^* = \frac{t\widehat{\varepsilon}(n)v}{1 + nh(n) + t\widehat{\varepsilon}(n)}.$$

# A Symmetric Hybrid Contest (1/4)

Assumption 2. The CSF is symmetric and homogeneous of degree 0.Note that, thanks to Assumption 2:

$$\frac{\partial p_i(s, s, \dots, s)}{\partial s_i} = \frac{\widehat{\varepsilon}(n)}{ns}, \text{ where } \widehat{\varepsilon}(n) \stackrel{\text{def}}{=} \varepsilon_i (1, 1, \dots, 1).$$
Use this in the FOC and impose symmetry:

$$(v-y^*)\frac{\widehat{\varepsilon}(n)}{ns^*} = C_1\left[s^*, \frac{1}{n}\right] = \frac{1}{ts^*}C\left[s^*, \frac{1}{n}\right] = \frac{1}{ts^*}\left[\frac{y^*}{n} + x^*\right]$$

 $\Leftrightarrow (v - y^*) t\widehat{\varepsilon}(n) = y^* + nx^*. \text{ And from before, } x^* = h(n)y^*.$ The last equalities are linear in  $x^*$  and  $y^*$ , so easy to solve.

**Proposition 3.** Within the family of sym. eq., there is a unique pure strategy equilibrium:  $s^* = f[h(n), 1] (y^*)^t$ ,  $x^* = h(n)y^*$ , and

$$y^* = \frac{t\widehat{\varepsilon}(n)v}{1 + nh(n) + t\widehat{\varepsilon}(n)}.$$

Assumption 2. The CSF is symmetric and homogeneous of degree 0.Note that, thanks to Assumption 2:

$$\frac{\partial p_i(s, s, \dots, s)}{\partial s_i} = \frac{\widehat{\varepsilon}(n)}{ns}, \text{ where } \widehat{\varepsilon}(n) \stackrel{\text{\tiny def}}{=} \varepsilon_i (1, 1, \dots, 1).$$
Use this in the FOC and impose symmetry:

$$(v-y^*)\frac{\widehat{\varepsilon}(n)}{ns^*} = C_1\left[s^*, \frac{1}{n}\right] = \frac{1}{ts^*}C\left[s^*, \frac{1}{n}\right] = \frac{1}{ts^*}\left[\frac{y^*}{n} + x^*\right]$$

 $\Leftrightarrow$   $(v - y^*) t\hat{\varepsilon}(n) = y^* + nx^*$ . And from before,  $x^* = h(n)y^*$ .

The last equalities are linear in  $x^*$  and  $y^*$ , so easy to solve.

$$y^* = \frac{t\widehat{\varepsilon}(n)v}{1 + nh(n) + t\widehat{\varepsilon}(n)}.$$

Assumption 2. The CSF is symmetric and homogeneous of degree 0.Note that, thanks to Assumption 2:

$$\frac{\partial p_i(s, s, \dots, s)}{\partial s_i} = \frac{\widehat{\varepsilon}(n)}{ns}, \text{ where } \widehat{\varepsilon}(n) \stackrel{\text{\tiny def}}{=} \varepsilon_i (1, 1, \dots, 1).$$
Use this in the FOC and impose symmetry:

$$(v-y^*)\frac{\widehat{\varepsilon}(n)}{ns^*} = C_1\left[s^*, \frac{1}{n}\right] = \frac{1}{ts^*}C\left[s^*, \frac{1}{n}\right] = \frac{1}{ts^*}\left[\frac{y^*}{n} + x^*\right]$$

 $\Leftrightarrow$   $(v - y^*) t \hat{\varepsilon}(n) = y^* + nx^*$ . And from before,  $x^* = h(n)y^*$ .

The last equalities are linear in  $x^*$  and  $y^*$ , so easy to solve.

$$y^* = \frac{t\widehat{\varepsilon}(n)v}{1 + nh(n) + t\widehat{\varepsilon}(n)}.$$

Assumption 2. The CSF is symmetric and homogeneous of degree 0.Note that, thanks to Assumption 2:

$$\frac{\partial p_i(s, s, \dots, s)}{\partial s_i} = \frac{\widehat{\varepsilon}(n)}{ns}, \text{ where } \widehat{\varepsilon}(n) \stackrel{\text{\tiny def}}{=} \varepsilon_i (1, 1, \dots, 1).$$

Use this in the FOC and impose symmetry:

$$(v-y^*)\frac{\widehat{\varepsilon}(n)}{ns^*} = C_1\left[s^*, \frac{1}{n}\right] = \frac{1}{ts^*}C\left[s^*, \frac{1}{n}\right] = \frac{1}{ts^*}\left[\frac{y^*}{n} + x^*\right]$$

 $\Leftrightarrow (\mathbf{v} - \mathbf{y}^*) t\widehat{\varepsilon}(n) = \mathbf{y}^* + n\mathbf{x}^*. \text{ And from before, } \mathbf{x}^* = h(n)\mathbf{y}^*.$ 

The last equalities are linear in  $x^*$  and  $y^*$ , so easy to solve.

$$y^* = \frac{t\widehat{\varepsilon}(n)v}{1 + nh(n) + t\widehat{\varepsilon}(n)}.$$

Assumption 2. The CSF is symmetric and homogeneous of degree 0.Note that, thanks to Assumption 2:

$$\frac{\partial p_i(s, s, \dots, s)}{\partial s_i} = \frac{\widehat{\varepsilon}(n)}{ns}, \text{ where } \widehat{\varepsilon}(n) \stackrel{\text{\tiny def}}{=} \varepsilon_i (1, 1, \dots, 1).$$

Use this in the FOC and impose symmetry:

$$(v-y^*)\frac{\widehat{\varepsilon}(n)}{ns^*} = C_1\left[s^*, \frac{1}{n}\right] = \frac{1}{ts^*}C\left[s^*, \frac{1}{n}\right] = \frac{1}{ts^*}\left[\frac{y^*}{n} + x^*\right]$$

 $\Leftrightarrow$   $(v - y^*) t \widehat{\varepsilon}(n) = y^* + nx^*$ . And from before,  $x^* = h(n)y^*$ .

The last equalities are linear in  $x^*$  and  $y^*$ , so easy to solve.

$$y^* = \frac{t\widehat{\varepsilon}(n)v}{1 + nh(n) + t\widehat{\varepsilon}(n)}.$$

Assumption 2. The CSF is symmetric and homogeneous of degree 0.Note that, thanks to Assumption 2:

$$\frac{\partial p_i(s, s, \ldots, s)}{\partial s_i} = \frac{\widehat{\varepsilon}(n)}{ns}, \text{ where } \widehat{\varepsilon}(n) \stackrel{\text{\tiny def}}{=} \varepsilon_i (1, 1, \ldots, 1).$$

Use this in the FOC and impose symmetry:

$$(v-y^*)\frac{\widehat{\varepsilon}(n)}{ns^*} = C_1\left[s^*, \frac{1}{n}\right] = \frac{1}{ts^*}C\left[s^*, \frac{1}{n}\right] = \frac{1}{ts^*}\left[\frac{y^*}{n} + x^*\right]$$

 $\Leftrightarrow (v - y^*) t\widehat{\varepsilon}(n) = y^* + nx^*.$  And from before,  $x^* = h(n)y^*.$ The last equalities are linear in  $x^*$  and  $y^*$ , so easy to solve.

Proposition 3. Within the family of sym. eq., there is a unique pure strategy equilibrium: s<sup>\*</sup> = f[h(n), 1] (y<sup>\*</sup>)<sup>t</sup>, x<sup>\*</sup> = h(n)y<sup>\*</sup>, and

$$y^* = \frac{t\widehat{\varepsilon}(n)v}{1+nh(n)+t\widehat{\varepsilon}(n)}.$$

Assumption 2. The CSF is symmetric and homogeneous of degree 0.Note that, thanks to Assumption 2:

$$\frac{\partial p_i(s, s, \ldots, s)}{\partial s_i} = \frac{\widehat{\varepsilon}(n)}{ns}, \text{ where } \widehat{\varepsilon}(n) \stackrel{\text{\tiny def}}{=} \varepsilon_i (1, 1, \ldots, 1).$$

Use this in the FOC and impose symmetry:

$$(v-y^*)\frac{\widehat{\varepsilon}(n)}{ns^*} = C_1\left[s^*, \frac{1}{n}\right] = \frac{1}{ts^*}C\left[s^*, \frac{1}{n}\right] = \frac{1}{ts^*}\left[\frac{y^*}{n} + x^*\right]$$

 $\Leftrightarrow (v - y^*) t\widehat{\varepsilon}(n) = y^* + nx^*.$  And from before,  $x^* = h(n)y^*.$ The last equalities are linear in  $x^*$  and  $y^*$ , so easy to solve.

$$y^* = rac{t\widehat{\varepsilon}(n)v}{1+nh(n)+t\widehat{\varepsilon}(n)}.$$

**Proposition 4.** Effect of more contestants on *x*<sup>\*</sup> and *y*<sup>\*</sup>:

$$rac{\partial x^*}{\partial n} < 0 \Leftrightarrow \sigma(n) > -rac{n(n-2)h(n)-1}{(n-1)[1+t\widehat{\varepsilon}(n)]}, \ rac{\partial y^*}{\partial n} > 0 \Leftrightarrow \sigma(n) > rac{n(n-2)h(n)-1}{(n-1)nh(n)};$$

and if  $\sigma(n) \ge 1$ , then necessarily  $\frac{\partial x^*}{\partial n} < 0$  and  $\frac{\partial y^*}{\partial n} > 0$ . In order to understand the above:

- More contestants means a lower probability of winning.
- This lowers the relative cost of investing in y<sub>i</sub>.
- So whenever  $\sigma(n)$  is sufficiently large,  $\frac{\partial y^*}{\partial n} > 0$  and  $\frac{\partial x^*}{\partial n} < 0$ .
- But if  $\sigma(n)$  small, the derivatives must have the same sign. For:

$$\frac{\partial y^*}{\partial n}\frac{n}{y^*} = \sigma(n) + \frac{\partial x^*}{\partial n}\frac{n}{x^*} \qquad \text{(follows from } x^* = h(n)y^*\text{)}.$$

As  $\sigma(n) \rightarrow 0$ , the production function requires  $x_i$  and  $y_i$  to be used in fixed proportions (a Leontief production technology).

- The total amount of equilibrium expenditures in the symmetric hybrid model is defined as  $R^{H} \stackrel{\text{def}}{=} nC\left[s^*, \frac{1}{n}\right]$ .
- The corresponding amount in the all-pay contest: R<sup>A</sup> = t c(n)v.
   Proposition 5, part (a). In the symmetric model:

$$R^{\mathsf{H}} = (1 - rac{y^{*}}{v})R^{\mathsf{A}} = \left[rac{1}{v\left[1 + nh(n)
ight]} + rac{1}{R^{\mathsf{A}}}
ight]^{-1}$$

In particular, for any finite *n*, we have  $R^{H} < R^{A}$ .

The payoff suggests the intuition: π<sub>i</sub> = (v<sub>i</sub> − y<sub>i</sub>) p<sub>i</sub> (s) − x<sub>i</sub>.
 Proposition 5, part (b). In the symmetric model, suppose p<sub>i</sub>(s) = φ(s<sub>i</sub>)/∑<sup>n</sup><sub>j=1</sub> φ(s<sub>j</sub>), where φ is a strictly increasing and concave function satisfying φ(0) = 0.

Then  $R^{H}$  is weakly increasing in *n* if and only if: (i)

$$\sigma(n) \le 1 + \frac{4n}{tr(n-1)^2}; \tag{2}$$

or (ii) inequality (2) is violated and  $h(n) \notin (\Xi_L, \Xi_H)$ . See figure

- The total amount of equilibrium expenditures in the symmetric hybrid model is defined as  $R^{\mathsf{H}} \stackrel{\text{def}}{=} nC\left[s^*, \frac{1}{n}\right]$ .
- The corresponding amount in the all-pay contest: R<sup>A</sup> = t c(n)v.
   Proposition 5, part (a). In the symmetric model:

$$R^{\mathsf{H}} = (1 - rac{y^{*}}{v})R^{\mathsf{A}} = \left[rac{1}{v\left[1 + nh(n)
ight]} + rac{1}{R^{\mathsf{A}}}
ight]^{-1}$$

In particular, for any finite *n*, we have  $R^{H} < R^{A}$ .

The payoff suggests the intuition: π<sub>i</sub> = (v<sub>i</sub> − y<sub>i</sub>) p<sub>i</sub> (s) − x<sub>i</sub>.
 Proposition 5, part (b). In the symmetric model, suppose p<sub>i</sub>(s) = φ(s<sub>i</sub>)/∑<sup>n</sup><sub>j=1</sub> φ(s<sub>j</sub>), where φ is a strictly increasing and concave function satisfying φ(0) = 0.

• Then  $R^{H}$  is weakly increasing in *n* if and only if: (i)

$$\sigma(n) \le 1 + \frac{4n}{tr(n-1)^2}; \tag{2}$$

or (ii) inequality (2) is violated and  $h(n) \notin (\Xi_L, \Xi_H)$ . See figure!

#### Illustration of result (b)

• Assume CES, t = 1, and n = 10.



J. Lagerlöf (U of Copenhagen)

Hybrid All-Pay and Winner-Pay Contests

June 5, 2018 18 / 24

- I assume n = 2 and I study three models:
  - The CSF is biased in favor of one contestant.
  - One contestant has a higher valuation than the other.
  - I also endogenize the degree of bias.
- **Assumption 3.** The CSF is given by

$$p_i(\mathbf{s}) = \frac{w_i s_i^r}{w_1 s_1^r + w_2 s_2^r}.$$

The following three equations define equilibrium values of  $p_1^*$ ,  $y_1^*$ , and  $y_2^*$ :

$$y_i^* = \frac{rtp_i^*(1-p_i^*)v_i}{rtp_i^*(1-p_i^*) + p_i^* + h\left(\frac{1}{p_i^*}\right)}, \quad \text{for } i = 1, 2, \text{ and } \Upsilon(p_1^*) = 0, \text{ where}$$
$$\Upsilon(p_1) \stackrel{\text{def}}{=} \frac{\frac{w_2 v_2^{rt}}{w_1 v_1^{rt}} p_1 f\left[h\left(\frac{1}{1-p_1}\right), 1\right]^r}{\left[rtp_1(1-p_1) + 1 - p_1 + h\left(\frac{1}{1-p_1}\right)\right]^{rt}} - \frac{(1-p_1) f\left[h\left(\frac{1}{p_1}\right), 1\right]^r}{\left[rtp_1(1-p_1) + p_1 + h\left(\frac{1}{p_1}\right)\right]^{rt}}.$$

The equilibrium is unique if  $r\eta\left(\frac{1}{p_i}\right)\sigma\left(\frac{1}{p_i}\right) \leq 1$ .

June 5, 2018 19 / 24

A B > A B > A B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

- I assume n = 2 and I study three models:
  - The CSF is biased in favor of one contestant.
  - One contestant has a higher valuation than the other.
  - I also endogenize the degree of bias.
- **Assumption 3.** The CSF is given by

$$p_i(\mathbf{s}) = \frac{w_i s_i^r}{w_1 s_1^r + w_2 s_2^r}.$$

The following three equations define equilibrium values of  $p_1^*$ ,  $y_1^*$ , and  $y_2^*$ :

$$y_{i}^{*} = \frac{rtp_{i}^{*}(1-p_{i}^{*})v_{i}}{rtp_{i}^{*}(1-p_{i}^{*})+p_{i}^{*}+h\left(\frac{1}{p_{i}^{*}}\right)}, \text{ for } i = 1, 2, \text{ and } \Upsilon(p_{1}^{*}) = 0, \text{ where}$$
$$\Upsilon(p_{1}) \stackrel{\text{def}}{=} \frac{\frac{w_{2}v_{2}^{t}}{w_{1}v_{1}^{tt}}p_{1}f\left[h\left(\frac{1}{1-p_{1}}\right),1\right]^{r}}{\left[rtp_{1}(1-p_{1})+1-p_{1}+h\left(\frac{1}{1-p_{1}}\right)\right]^{rt}} - \frac{(1-p_{1})f\left[h\left(\frac{1}{p_{1}}\right),1\right]^{r}}{\left[rtp_{1}(1-p_{1})+p_{1}+h\left(\frac{1}{p_{1}}\right)\right]^{rt}}.$$
$$\blacksquare \text{ The equilibrium is unique if } r\eta\left(\frac{1}{p_{i}}\right)\sigma\left(\frac{1}{p_{i}}\right) \leq 1.$$

J. Lagerlöf (U of Copenhagen)

Hybrid All-Pay and Winner-Pay Contests

June 5, 2018 19 / 24

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

- I assume n = 2 and I study three models:
  - The CSF is biased in favor of one contestant.
  - One contestant has a higher valuation than the other.
  - I also endogenize the degree of bias.
- Assumption 3. The CSF is given by

$$p_i(\mathbf{s}) = \frac{w_i s_i^r}{w_1 s_1^r + w_2 s_2^r}.$$

• The following three equations define equilibrium values of  $p_1^*$ ,  $y_1^*$ , and  $y_2^*$ :

$$y_{i}^{*} = \frac{rtp_{i}^{*}(1-p_{i}^{*})v_{i}}{rtp_{i}^{*}(1-p_{i}^{*}) + p_{i}^{*} + h\left(\frac{1}{p_{i}^{*}}\right)}, \text{ for } i = 1, 2, \text{ and } \Upsilon(p_{1}^{*}) = 0, \text{ where}$$
$$\Upsilon(p_{1}) \stackrel{\text{def}}{=} \frac{\frac{w_{2}v_{1}^{\prime t}}{w_{1}v_{1}^{\prime t}}p_{1}f\left[h\left(\frac{1}{1-p_{1}}\right),1\right]^{\prime}}{\left[rtp_{1}(1-p_{1})+1-p_{1}+h\left(\frac{1}{1-p_{1}}\right)\right]^{\prime t}} - \frac{(1-p_{1})f\left[h\left(\frac{1}{p_{1}}\right),1\right]^{\prime}}{\left[rtp_{1}(1-p_{1})+p_{1}+h\left(\frac{1}{p_{1}}\right)\right]^{\prime t}}.$$

• The equilibrium is unique if  $r\eta\left(\frac{1}{p_i}\right)\sigma\left(\frac{1}{p_i}\right) \leq 1.$ 

- A Biased decision process ( $w_1 \neq w_2$  but  $v_1 = v_2$ )
  - Among the results:
    - (a)  $p_1^* > p_2^* \Leftrightarrow y_1^* < y_2^* \Leftrightarrow C(s_1^*, p_1^*) > C(s_2^*, p_2^*).$ (b) Evaluated at symmetry  $(w_1 = w_2): \frac{\partial p_1^*}{\partial w_1} > 0,$

$$\frac{\partial y_1^*}{\partial w_1} < 0, \quad \frac{\partial y_2^*}{\partial w_1} > 0, \quad \frac{\partial x_1^*}{\partial w_1} > 0 \Leftrightarrow \frac{\partial x_2^*}{\partial w_1} < 0 \Leftrightarrow \sigma(2) > \frac{2}{2 + rt}.$$

Different valuations ( $v_1 \neq v_2$  but  $w_1 = w_2$ )

Among the results:

(a) 
$$p_1^* > p_2^* \Leftrightarrow \frac{y_1^*}{v_1} < \frac{y_2^*}{v_2}.$$
  
(b)  $v_1 - y_1^* > v_2 - y_2^* \Leftrightarrow C(s_1^*, p_1^*) > C(s_2^*, p_2^*)$ 

- A Biased decision process ( $w_1 \neq w_2$  but  $v_1 = v_2$ )
  - Among the results:
    - (a)  $p_1^* > p_2^* \Leftrightarrow y_1^* < y_2^* \Leftrightarrow C(s_1^*, p_1^*) > C(s_2^*, p_2^*).$ (b) Evaluated at symmetry  $(w_1 = w_2): \frac{\partial p_1^*}{\partial w_1} > 0,$

$$\frac{\partial y_1^*}{\partial w_1} < 0, \quad \frac{\partial y_2^*}{\partial w_1} > 0, \quad \frac{\partial x_1^*}{\partial w_1} > 0 \Leftrightarrow \frac{\partial x_2^*}{\partial w_1} < 0 \Leftrightarrow \sigma(2) > \frac{2}{2 + rt}.$$

Different valuations ( $v_1 \neq v_2$  but  $w_1 = w_2$ )

Among the results:

(a) 
$$p_1^* > p_2^* \Leftrightarrow \frac{y_1^*}{v_1} < \frac{y_2^*}{v_2}$$
.  
(b)  $v_1 - y_1^* > v_2 - y_2^* \Leftrightarrow C(s_1^*, p_1^*) > C(s_2^*, p_2^*)$ .

ヘロト 人間 とくき とくき とうせい

An Endogenous Bias ( $w_1$  chosen, but  $v_1 \ge v_2$  and  $w_2$  fixed)

- Timing of events in the game:
  - **1** A principal chooses  $w_1$  to maximize  $R^H = C(s_1^*, p_1^*) + C(s_2^*, p_2^*)$ .
  - 2  $w_1$  becomes common knowledge and the contestants interact as in the previous analysis.
- Assumption 3. The production function is of Cobb-Douglas form:  $f(x_i, y_i) = x_i^{\alpha} y_i^{\beta}$ , for  $\alpha > 0$  and  $\beta > 0$ .

**Results:** The equilibrium values of  $p_1$  and  $w_1$  satisfy:

If 
$$v_1 = v_2$$
, then  $\widehat{p}_1 = \frac{1}{2}$  and  $\widehat{w}_1 = w_2$ .

If  $v_1 > v_2$ , then  $\hat{p}_1 > \frac{1}{2}$ .

If  $v_1 > v_2$ , then  $\widehat{w}_1 < w_2$  at least if  $|v_1 - v_2|$  is very small or big. My intuition for results:

- Contestant 1 is more valuable as a contributor (as  $v_1 > v_2$ ).
- Hence, she should be encouraged to use x<sub>1</sub>, as all-pay investments are more conducive to large expenditures.
- This is achieved by making winner-pay inv. costly:  $\hat{p}_1 > \frac{1}{2}$ .
- To generate p̂<sub>1</sub> > 1/2, v<sub>1</sub> > v<sub>2</sub> is more than enough, so bias can be in favor of Contestant 2.
  - Might not be robus

June 5, 2018 21 / 24

イロト イポト イヨト イヨト

An Endogenous Bias ( $w_1$  chosen, but  $v_1 \ge v_2$  and  $w_2$  fixed)

- Timing of events in the game:
  - **1** A principal chooses  $w_1$  to maximize  $R^H = C(s_1^*, p_1^*) + C(s_2^*, p_2^*)$ .
  - 2 w<sub>1</sub> becomes common knowledge and the contestants interact as in the previous analysis.
- Assumption 3. The production function is of Cobb-Douglas form:  $f(x_i, y_i) = x_i^{\alpha} y_i^{\beta}$ , for  $\alpha > 0$  and  $\beta > 0$ .
- Results: The equilibrium values of  $p_1$  and  $w_1$  satisfy:

If 
$$v_1 = v_2$$
, then  $\widehat{p}_1 = \frac{1}{2}$  and  $\widehat{w}_1 = w_2$ .

If 
$$v_1 > v_2$$
, then  $\hat{p}_1 > \frac{1}{2}$ .

If  $v_1 > v_2$ , then  $\widehat{w}_1 < w_2$  at least if  $|v_1 - v_2|$  is very small or big. My intuition for results:

- Contestant 1 is more valuable as a contributor (as  $v_1 > v_2$ ).
- Hence, she should be encouraged to use x<sub>1</sub>, as all-pay investments are more conducive to large expenditures.
- This is achieved by making winner-pay inv. costly:  $\hat{p}_1 > \frac{1}{2}$ .
- To generate  $\hat{p}_1 > \frac{1}{2}$ ,  $v_1 > v_2$  is more than enough, so bias can be in favor of Contestant 2.
  - Might not be robust.

Numerical example ( $t = r = v_2 = w_2 = 1$ )

Plot of plot p̂<sub>1</sub> and ŵ<sub>1</sub> against v<sub>1</sub> for three different values of α: 0.9 (the blue, dotted curve), 0.5 (the green, dashed curve), and 0.1 (the red, solid curve).



## Main results and contributions: (1/1)

**I** The analytical approach (borrowing from producer theory):

 $\blacksquare \rightarrow$  Generality, tractability, and an existence condition.

A larger n leads to substitution away from all-pay investments.
But only if the elasticity of substitution is large enough.

**3** Total expenditures always lower in hybrid contest than in all-pay.

**4** Total exp'tures can be decreasing in n (also shown by Melkoyan).

 Asym. contests (in terms of valuations and bias): Sharp predictions about relative size of investm's and of expenditures.

6 Endogenous bias: High-valuation contestant more likely to win but the bias is against her (the latter might not be robust).

June 5, 2018 23 / 24

# Possible avenues for future work (1/1)

- **1** Sequential moves: first  $(x_1, y_1)$ , then  $(x_2, y_2)$ .
- 2 Applying the producer theory approach to other contest models with multiple influence channels.

#### 3 Experimental testing.

- Relatively sharp predictions.
- But risk neutrality might be an issue?
- 4 Further work on asymmetric contests.
  - More than two contestants.
  - Can a contestant be hurt by a bias in favor of her?
  - Can a contestant benefit from an increase in rival's valuation?

#### **5** Contest design in broader settings.