Hybrid All-Pay and Winner-Pay Contests

 Seminar at DICE in Düsseldorf, June 5, 2018Johan N. M. Lagerlöf
Dept. of Economics, U. of Copenhagen
Email: johan.lagerlof@econ.ku.dk
Website: www.johanlagerlof.com

June 2, 2018

Introduction: What is a hybrid contest? $(1 / 2)$

■ A hybrid contest:
■ In some economic, social, or political situation, each one of a number of economic agents try to win an indivisible prize.

- To increase her probability of winning, each contestant makes both all-pay investments and winner-pay investments.

■ All-pay investments: Candidate cities spend money upfront, with the goal of persuading members of the IOC.

- Winner-pay investments: A city commits to build new stadia and invest in safety arrangements if being awarded the Games.
- Contestant i chooses

0 and $y_{i} \geq 0$ to maximize
subject to $s_{i}=f\left(x_{i}, y_{i}\right)$.

Introduction: What is a hybrid contest? $(1 / 2)$

■ A hybrid contest:
■ In some economic, social, or political situation, each one of a number of economic agents try to win an indivisible prize.

- To increase her probability of winning, each contestant makes both all-pay investments and winner-pay investments.
■ Example: The competitive bidding to host the Olympic games.
- All-pay investments: Candidate cities spend money upfront, with the goal of persuading members of the IOC.
- Winner-pay investments: A city commits to build new stadia and invest in safety arrangements if being awarded the Games.

■ Contestant i chooses $x_{i} \geq 0$ and $y_{i} \geq 0$ to maximize

Introduction: What is a hybrid contest? $(1 / 2)$

■ A hybrid contest:

- In some economic, social, or political situation, each one of a number of economic agents try to win an indivisible prize.
- To increase her probability of winning, each contestant makes both all-pay investments and winner-pay investments.
■ Example: The competitive bidding to host the Olympic games.
- All-pay investments: Candidate cities spend money upfront, with the goal of persuading members of the IOC.
- Winner-pay investments: A city commits to build new stadia and invest in safety arrangements if being awarded the Games.
- To fix ideas, consider the following formalization:
- Contestant i chooses $x_{i} \geq 0$ and $y_{i} \geq 0$ to maximize

$$
\pi_{i}=\left(v_{i}-y_{i}\right) p_{i}\left(s_{1}, s_{2}, \ldots s_{n}\right)-x_{i}
$$

subject to $s_{i}=f\left(x_{i}, y_{i}\right)$.

Introduction: Other examples $(2 / 2)$

■ Competition for a government contract or grant:
■ All-pay investments: Time/effort spent on preparing proposal.
■ Winner-pay investments: Commit to ambitious customer service.

- A political election:
- All-pay investments: Campaign expenditures.
- Winner-pay investments: Electoral promises (costly if they deviate from the politician's own ideal policy).
■ Rent seeking to win monopoly rights of a regulated market:
- All-pay investments: Ex ante bribes (how Tullock modeled it).
- Winner-pay investments: Conditional bribes.

■ Tullock's motivation:
■ Empirical studies in the 1950s: DWL appears to be tiny.

- Tullock: Maybe a part of profits adds to the cost of monopoly.

Literature Review (1/2)

- Two earlier papers that model a hybrid contest:

■ Haan and Schonbeek (2003).

- They assume Cobb-Douglas-which here is quite restrictive.
- Melkoyan (2013).

■ CES but with $\sigma \geq 1$. Symmetric model. Hard to check SOC.
■ My analysis: (i) other approach which yields easy-to-check existence condition; (ii) assumes general production function and CSF; (iii) studies both symmetric and asymmetric models.

■ Sabotage in contests (improve own performance and sabotage the others performance): Konrad (2000), Chen (2003)

- War and conflict (choice of production and appropriation) - Multiple all-pay "arms" (maybe with different costs)

Literature Review (1/2)

■ Two earlier papers that model a hybrid contest:
■ Haan and Schonbeek (2003).
■ They assume Cobb-Douglas-which here is quite restrictive.

- Melkoyan (2013).
- CES but with $\sigma \geq 1$. Symmetric model. Hard to check SOC.

■ My analysis: (i) other approach which yields easy-to-check existence condition; (ii) assumes general production function and CSF; (iii) studies both symmetric and asymmetric models.

- Other contest models with more than one influence channel:

■ Sabotage in contests (improve own performance and sabotage the others performance): Konrad (2000), Chen (2003).

- War and conflict (choice of production and appropriation): Hirschleifer (1991) and Skaperdas and Syroploulos (1997).
■ Multiple all-pay "arms" (maybe with different costs):
Arbatskaya and Mialon (2010).

Literature Review (2/2)

- Multidimensional (procurement) auctions:

■ Che (2003), Branck (1997), Asker and Cantillon (2008).

- Firms bid on both price and (many dimensions of) quality.
- The components of each bid jointly determine a score.

■ Auctioneer chooses bidder with highest score.
■ Differences:

- In their models, not both all-pay and winner-pay ingredients.
- Not a probabilistic CSF.
- A principal wants to procure an innovation.
- Fimrs choose both quality of innovation and the prize if winning.
- Thus, effectively, both all-pay and winner-pay ingredients.
- Differences: Not a probabilistic CSF (so mixed strategy eq.)
linear production function, mechanism

Literature Review (2/2)

- Multidimensional (procurement) auctions:

■ Che (2003), Branck (1997), Asker and Cantillon (2008).

- Firms bid on both price and (many dimensions of) quality.
- The components of each bid jointly determine a score.
- Auctioneer chooses bidder with highest score.

■ Differences:
■ In their models, not both all-pay and winner-pay ingredients.

- Not a probabilistic CSF.
- Optimal design of a research contest: Che and Gale (2003).
- A principal wants to procure an innovation.
- Fimrs choose both quality of innovation and the prize if winning.
- Thus, effectively, both all-pay and winner-pay ingredients.

■ Differences: Not a probabilistic CSF (so mixed strategy eq.), linear production function, mechanism design approach.

A model of a hybrid contest $(1 / 2)$

- $n \geq 2$ contestants try to win an indivisible prize.
$■$ Contestant i chooses $x_{i} \geq 0$ and $y_{i} \geq 0$ to maximize the following expected payoff:

$$
\pi_{i}=\left(v_{i}-y_{i}\right) p_{i}(\mathbf{s})-x_{i}, \quad \text { subject to } s_{i}=f\left(x_{i}, y_{i}\right)
$$

where $\mathbf{s}=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ and $s_{i} \geq 0$ is contestant i's score.

- $v_{i}>0$ is i 's valuation of the prize.
- $p_{i}(\mathbf{s})$ is i 's prob. of winning (or contest success function, CSF).
- x_{i} is the all-pay investment: paid whether i wins or not.
- y_{i} is the winner-pay investment: paid i.f.f. i wins.
- It is a one-shot game where the contestants choose their investments $\left(x_{i}, y_{i}\right)$ simultaneously with each other.

A model of a hybrid contest $(2 / 2)$

- Assumptions about $p_{i}(\mathbf{s})$:

■ Twice continuously differentiable in its arguments.
■ Strictly increasing and strictly concave in s_{i}.

- Strictly decreasing in s_{j} for all $j \neq i$.
- The contest is won by someone: $\sum_{j=1}^{n} p_{j}(\mathbf{s})=1$.

■ Later I assume that $p_{i}(\mathbf{s})$ is homogeneous in \mathbf{s}.

- Thrice continuously differentiable in its arguments.
- Strictly increasing in each of its arguments.
- Strictly quasiconcave.
- Homogeneous of degree $t>0: \forall k>0 f\left(k x_{i}, k y_{i}\right)=k^{t} f\left(x_{i}, y_{i}\right)$
- Inada conditions to rule out $x_{i}=0$ or $y_{i}=0$.
- Examples:

A model of a hybrid contest $(2 / 2)$

- Assumptions about $p_{i}(\mathbf{s})$:

■ Twice continuously differentiable in its arguments.
■ Strictly increasing and strictly concave in s_{i}.

- Strictly decreasing in s_{j} for all $j \neq i$.
- The contest is won by someone: $\sum_{j=1}^{n} p_{j}(\mathbf{s})=1$.

■ Later I assume that $p_{i}(\mathbf{s})$ is homogeneous in \mathbf{s}.
■ Assumptions about $f\left(x_{i}, y_{i}\right)$:
■ Thrice continuously differentiable in its arguments.
■ Strictly increasing in each of its arguments.

- Strictly quasiconcave.

■ Homogeneous of degree $t>0: \forall k>0 f\left(k x_{i}, k y_{i}\right)=k^{t} f\left(x_{i}, y_{i}\right)$.
■ Inada conditions to rule out $x_{i}=0$ or $y_{i}=0$.

- Examples:

A model of a hybrid contest $(2 / 2)$

- Assumptions about $p_{i}(\mathbf{s})$:

■ Twice continuously differentiable in its arguments.
■ Strictly increasing and strictly concave in s_{i}.

- Strictly decreasing in s_{j} for all $j \neq i$.
- The contest is won by someone: $\sum_{j=1}^{n} p_{j}(\mathbf{s})=1$.

■ Later I assume that $p_{i}(\mathbf{s})$ is homogeneous in \mathbf{s}.
■ Assumptions about $f\left(x_{i}, y_{i}\right)$:
■ Thrice continuously differentiable in its arguments.
■ Strictly increasing in each of its arguments.

- Strictly quasiconcave.

■ Homogeneous of degree $t>0$: $\forall k>0 f\left(k x_{i}, k y_{i}\right)=k^{t} f\left(x_{i}, y_{i}\right)$.
■ Inada conditions to rule out $x_{i}=0$ or $y_{i}=0$.
■ Examples:

$$
p_{i}(\mathbf{s})=\frac{w_{i} s_{i}^{r}}{\sum_{j=1}^{n} w_{j} s_{j}^{r}}, \quad f\left(x_{i}, y_{i}\right)=\left[\alpha x^{\frac{\sigma-1}{\sigma}}+(1-\alpha) y^{\frac{\sigma-1}{\sigma}}\right]^{\frac{t \sigma}{\sigma-1}}
$$

Analysis (1/7)

■ One possible approach:

- Plug the production function into the CSF.
- Take FOCs w.r.t. x_{i} and y_{i}.

■ Used by Haan and Schoonbeek (2003) and Melkoyan (2013), assuming Cobb-Douglas and CES, respectively.

- My approach: Solve for contestant i's best reply in two steps:

1 Compute the conditional factor demands.

- That is, derive optimal x_{i} and y_{i}, given \mathbf{s} (so also given s_{i}).

2 Plug the factor demands into the payoff and then characterize contestant i 's optimal score s_{i} (given $\mathbf{s}_{-\mathbf{i}}$)

- | mportant advantage: a single choice variable at 2, so easier to determine what conditions are required for equilibrium existence

Analysis (1/7)

■ One possible approach:
■ Plug the production function into the CSF.

- Take FOCs w.r.t. x_{i} and y_{i}.

■ Used by Haan and Schoonbeek (2003) and Melkoyan (2013), assuming Cobb-Douglas and CES, respectively.
■ My approach: Solve for contestant i's best reply in two steps:
1 Compute the conditional factor demands.

- That is, derive optimal x_{i} and y_{i}, given \mathbf{s} (so also given s_{i}).

2 Plug the factor demands into the payoff and then characterize contestant i 's optimal score s_{i} (given $\mathbf{s}_{-\mathbf{i}}$).
■ Important advantage: a single choice variable at 2, so easier to determine what conditions are required for equilibrium existence.

■ Contestant i solves (for fixed p_{i}): $\min _{x_{i}, y_{i}} p_{i} y_{i}+x_{i}$, subject to $f\left(x_{i}, y_{i}\right)=s_{i}$.

- The first-order conditions (λ_{i} is the Lagrange multiplier):

$$
\frac{\partial \mathcal{L}_{i}}{\partial x_{i}}=1-\lambda_{i} f_{1}\left(x_{i}, y_{i}\right)=0, \quad \frac{\partial \mathcal{L}_{i}}{\partial y_{i}}=p_{i}-\lambda_{i} f_{2}\left(x_{i}, y_{i}\right)=0 .
$$

- So, by combining the FOCs:

$$
\frac{1}{p_{i}}=\frac{f_{1}\left(x_{i}, y_{i}\right)}{f_{2}\left(x_{i}, y_{i}\right)} \stackrel{\text { di }}{=} g\left(\frac{x_{i}}{y_{i}}\right) \Rightarrow x_{i}=y_{i} h\left(\frac{1}{p_{i}}\right)
$$

where h is the inverse of g (i.e., $h \stackrel{\text { def }}{=} g^{-1}$).

- By plugging back into $s_{i}=f\left(x_{i}, y_{i}\right)$ and rewriting, we obtain:

$$
Y_{i}\left(s_{i}, p_{i}\right)=\left[\frac{s_{i}}{f\left(h\left(1 / p_{i}\right), 1\right)}\right]^{\frac{1}{t}}, \quad X_{i}\left(s_{i}, p_{i}\right)=Y_{i}\left(s_{i}, p_{i}\right) h\left(\frac{1}{p_{i}}\right)
$$

- Contestant i 's payoff: $\pi_{i}(\mathbf{s})=p_{i}(\mathbf{s}) v_{i}-C_{i}\left[s_{i}, p_{i}(\mathbf{s})\right]$, where

$$
C_{i}\left[s_{i} ; p_{i}(\mathbf{s})\right] \stackrel{\text { def }}{=} p_{i}(\mathbf{s}) Y_{i}\left[s_{;}, p_{i}(\mathbf{s})\right]+X_{i}\left[s_{i} ; p_{i}(\mathbf{s})\right]
$$

- A Nash equilibrium of the hybrid contest:
- Contestant i solves (for fixed p_{i}): $\min _{x_{i}, y_{i}} p_{i} y_{i}+x_{i}$, subject to $f\left(x_{i}, y_{i}\right)=s_{i}$.
- The first-order conditions (λ_{i} is the Lagrange multiplier):

$$
\frac{\partial \mathcal{L}_{i}}{\partial x_{i}}=1-\lambda_{i} f_{1}\left(x_{i}, y_{i}\right)=0, \quad \frac{\partial \mathcal{L}_{i}}{\partial y_{i}}=p_{i}-\lambda_{i} f_{2}\left(x_{i}, y_{i}\right)=0 .
$$

- So, by combining the FOCs:

where h is the inverse of g (i.e., $h \stackrel{\text { def }}{=} g^{-1}$).
- By plugging back into $s_{i}=f\left(x_{i}, y_{i}\right)$ and rewriting, we obtain:

$$
Y_{i}\left(s_{i}, p_{i}\right)=\left[\frac{s_{i}}{f\left(h\left(1 / p_{i}\right), 1\right)}\right]^{\frac{1}{t}}, \quad X_{i}\left(s_{i}, p_{i}\right)=Y_{i}\left(s_{i}, p_{i}\right) h\left(\frac{1}{p_{i}}\right)
$$

- Contestant i 's payoff: $\pi_{i}(\mathbf{s})=p_{i}(\mathbf{s}) v_{i}-C_{i}\left[s_{i}, p_{i}(\mathbf{s})\right]$, where

$$
C_{i}\left[s_{i}, p_{i}(\mathbf{s})\right] \stackrel{\text { def }}{=} p_{i}(\mathbf{s}) Y_{i}\left[s_{i}, p_{i}(\mathbf{s})\right]+X_{i}\left[s_{i}, p_{i}(\mathbf{s})\right]
$$

■ Contestant i solves (for fixed p_{i}): $\min _{x_{i}, y_{i}} p_{i} y_{i}+x_{i}$, subject to $f\left(x_{i}, y_{i}\right)=s_{i}$.

- The first-order conditions (λ_{i} is the Lagrange multiplier):

$$
\frac{\partial \mathcal{L}_{i}}{\partial x_{i}}=1-\lambda_{i} f_{1}\left(x_{i}, y_{i}\right)=0, \quad \frac{\partial \mathcal{L}_{i}}{\partial y_{i}}=p_{i}-\lambda_{i} f_{2}\left(x_{i}, y_{i}\right)=0 .
$$

- So, by combining the FOCs:

$$
\frac{1}{p_{i}}=\frac{f_{1}\left(x_{i}, y_{i}\right)}{f_{2}\left(x_{i}, y_{i}\right)} \stackrel{\text { def }}{=} g\left(\frac{x_{i}}{y_{i}}\right) \Rightarrow x_{i}=y_{i} h\left(\frac{1}{p_{i}}\right)
$$

where h is the inverse of g (i.e., $h \stackrel{\text { def }}{=} g^{-1}$).

- By plugging back into $s_{i}=f\left(x_{i}, y_{i}\right)$ and rewriting, we obtain:

$$
Y_{i}\left(s_{i}, p_{i}\right)=\left[\frac{s_{i}}{f\left(h\left(1 / p_{i}\right), 1\right)}\right]^{]^{\frac{1}{t}}}, \quad X_{i}\left(s_{i}, p_{i}\right)=Y_{i}\left(s_{i}, p_{i}\right) h\left(\frac{1}{p_{i}}\right)
$$

- Contestant i 's payoff: $\pi_{i}(\mathbf{s})=p_{i}(\mathbf{s}) v_{i}-C_{i}\left[s_{i}, p_{i}(\mathbf{s})\right]$, where

$$
C_{i}\left[s_{i}, p_{i}(\mathbf{s})\right] \stackrel{\text { def }}{=} p_{i}(\mathbf{s}) Y_{i}\left[s_{i}, p_{i}(\mathbf{s})\right]+X_{i}\left[s_{i}, p_{i}(\mathbf{s})\right]
$$

■ Contestant i solves (for fixed p_{i}): $\min _{x_{i}, y_{i}} p_{i} y_{i}+x_{i}$, subject to $f\left(x_{i}, y_{i}\right)=s_{i}$.

- The first-order conditions (λ_{i} is the Lagrange multiplier):

$$
\frac{\partial \mathcal{L}_{i}}{\partial x_{i}}=1-\lambda_{i} f_{1}\left(x_{i}, y_{i}\right)=0, \quad \frac{\partial \mathcal{L}_{i}}{\partial y_{i}}=p_{i}-\lambda_{i} f_{2}\left(x_{i}, y_{i}\right)=0 .
$$

- So, by combining the FOCs:

$$
\frac{1}{p_{i}}=\frac{f_{1}\left(x_{i}, y_{i}\right)}{f_{2}\left(x_{i}, y_{i}\right)} \stackrel{\text { def }}{=} g\left(\frac{x_{i}}{y_{i}}\right) \Rightarrow x_{i}=y_{i} h\left(\frac{1}{p_{i}}\right)
$$

where h is the inverse of g (i.e., $h \stackrel{\text { def }}{=} g^{-1}$).

- By plugging back into $s_{i}=f\left(x_{i}, y_{i}\right)$ and rewriting, we obtain:

- Contestant i 's payoff: $\pi_{i}(\mathbf{s})=p_{i}(\mathbf{s}) v_{i}-C_{i}\left[s_{i}, p_{i}(\mathbf{s})\right]$, where

$$
C_{i}\left[s_{i}, p_{i}(\mathbf{s})\right] \stackrel{\text { def }}{=} p_{i}(\mathbf{s}) Y_{i}\left[s_{i}, p_{i}(\mathbf{s})\right]+X_{i}\left[s_{i}, p_{i}(\mathbf{s})\right]
$$

- Contestant i solves (for fixed $\left.p_{i}\right): \min _{x_{i}, y_{i}} p_{i} y_{i}+x_{i}$, subject to $f\left(x_{i}, y_{i}\right)=s_{i}$.
- The first-order conditions (λ_{i} is the Lagrange multiplier):

$$
\frac{\partial \mathcal{L}_{i}}{\partial x_{i}}=1-\lambda_{i} f_{1}\left(x_{i}, y_{i}\right)=0, \quad \frac{\partial \mathcal{L}_{i}}{\partial y_{i}}=p_{i}-\lambda_{i} f_{2}\left(x_{i}, y_{i}\right)=0 .
$$

- So, by combining the FOCs:

$$
\frac{1}{p_{i}}=\frac{f_{1}\left(x_{i}, y_{i}\right)}{f_{2}\left(x_{i}, y_{i}\right)} \stackrel{\text { def }}{=} g\left(\frac{x_{i}}{y_{i}}\right) \Rightarrow x_{i}=y_{i} h\left(\frac{1}{p_{i}}\right)
$$

where h is the inverse of g (i.e., $h \stackrel{\text { def }}{=} g^{-1}$).

- By plugging back into $s_{i}=f\left(x_{i}, y_{i}\right)$ and rewriting, we obtain:

- Contestant i 's payoff: $\pi_{i}(\mathbf{s})=p_{i}(\mathbf{s}) v_{i}-C_{i}\left[s_{i}, p_{i}(\mathbf{s})\right]$, where

$$
C_{i}\left[s_{i}, p_{i}(\mathbf{s})\right] \stackrel{\text { def }}{=} p_{i}(\mathbf{s}) Y_{i}\left[s_{;}, p_{i}(\mathbf{s})\right]+X_{i}\left[s_{i}, p_{i}(\mathbf{s})\right]
$$

- Contestant i solves (for fixed $\left.p_{i}\right): \min _{x_{i}, y_{i}} p_{i} y_{i}+x_{i}$, subject to $f\left(x_{i}, y_{i}\right)=s_{i}$.
- The first-order conditions (λ_{i} is the Lagrange multiplier):

$$
\frac{\partial \mathcal{L}_{i}}{\partial x_{i}}=1-\lambda_{i} f_{1}\left(x_{i}, y_{i}\right)=0, \quad \frac{\partial \mathcal{L}_{i}}{\partial y_{i}}=p_{i}-\lambda_{i} f_{2}\left(x_{i}, y_{i}\right)=0 .
$$

- So, by combining the FOCs:

$$
\frac{1}{p_{i}}=\frac{f_{1}\left(x_{i}, y_{i}\right)}{f_{2}\left(x_{i}, y_{i}\right)} \stackrel{\text { def }}{=} g\left(\frac{x_{i}}{y_{i}}\right) \Rightarrow x_{i}=y_{i} h\left(\frac{1}{p_{i}}\right),
$$

where h is the inverse of g (i.e., $h \stackrel{\text { def }}{=} g^{-1}$).

- By plugging back into $s_{i}=f\left(x_{i}, y_{i}\right)$ and rewriting, we obtain:

$$
Y_{i}\left(s_{i}, p_{i}\right)=\left[\frac{s_{i}}{f\left(h\left(1 / p_{i}\right), 1\right)}\right]^{\frac{1}{t}}, \quad X_{i}\left(s_{i}, p_{i}\right)=Y_{i}\left(s_{i}, p_{i}\right) h\left(\frac{1}{p_{i}}\right) .
$$

■ Contestant i 's payoff: $\pi_{i}(\mathbf{s})=p_{i}(\mathbf{s}) v_{i}-C_{i}\left[s_{i}, p_{i}(\mathbf{s})\right]$, where

$$
C_{i}\left[s_{i}, p_{i}(\mathbf{s})\right] \stackrel{\text { def }}{=} p_{i}(\mathbf{s}) Y_{i}\left[s_{i}, p_{i}(\mathbf{s})\right]+X_{i}\left[s_{i}, p_{i}(\mathbf{s})\right] .
$$

- A Nash equilibrium of the hybrid contest:
- A profile \mathbf{s}^{*} such that $\pi_{i}\left(\mathbf{s}^{*}\right) \geq \pi_{i}\left(s_{i}, \mathbf{s}_{-\mathbf{i}}^{*}\right)$, all i and all $s_{i} \geqq 0$.

Analysis (3/7)

The cost-minimization problem and the h function

(a) Cost minimization.
(b) Graph of the g function.
(c) Graph of the h function.

Analysis (4/7)

Equilibrium existence

Define the following elasticities:
■ The elasticity of output w.r.t. $x_{i}: \eta\left(\frac{1}{p_{i}}\right) \stackrel{\text { def }}{=} \frac{f_{1}\left[h\left(\frac{1}{p_{i}}\right), 1\right] h\left(\frac{1}{p_{i}}\right)}{f\left[h\left(\frac{1}{p_{i}}\right), 1\right]}$.
■ The elasticity of substitution: $\sigma\left(\frac{1}{p_{i}}\right) \stackrel{\text { def }}{=}-\frac{h^{\prime}\left(\frac{1}{p_{i}}\right) \frac{1}{p_{i}}}{h\left(\frac{1}{p_{i}}\right)}$.

- The elasticity of the win probability w.r.t. $s_{i}: \varepsilon_{i}(\mathbf{s}) \stackrel{\text { def }}{=} \frac{\partial p_{i}}{\partial s_{i}} \frac{s_{i}}{p_{i}}$.

- Proposition 1. Suppose Assumption 1 is satisfied. Then there exists a pure strategy Nash equilibrium of the hybrid contest.

Analysis (4/7)

Equilibrium existence

Define the following elasticities:
■ The elasticity of output w.r.t. $x_{i}: \eta\left(\frac{1}{p_{i}}\right) \stackrel{\text { def }}{=} \frac{f_{1}\left[h\left(\frac{1}{p_{i}}\right), 1\right] h\left(\frac{1}{p_{i}}\right)}{f\left[h\left(\frac{1}{p_{i}}\right), 1\right]}$.

- The elasticity of substitution: $\sigma\left(\frac{1}{p_{i}}\right) \stackrel{\text { def }}{=}-\frac{h^{\prime}\left(\frac{1}{p_{i}}\right) \frac{1}{p_{i}}}{h\left(\frac{1}{p_{i}}\right)}$.
- The elasticity of the win probability w.r.t. $s_{i}: \varepsilon_{i}(\mathbf{s}) \stackrel{\text { def }}{=} \frac{\partial p_{i}}{\partial s_{i}} \frac{s_{i}}{p_{i}}$.
$■$ We have that $\eta \in(0, t), \sigma>0$, and $\varepsilon_{i} \in(0,1)$.
- Assumption 1. The production function and the CSF satisfy:
- Proposition 1. Suppose Assumption 1 is satisfied. Then there

Analysis $(4 / 7)$

Equilibrium existence

Define the following elasticities:
■ The elasticity of output w.r.t. $x_{i}: \eta\left(\frac{1}{p_{i}}\right) \stackrel{\text { def }}{=} \frac{f_{1}\left[h\left(\frac{1}{p_{i}}\right), 1\right] h\left(\frac{1}{p_{i}}\right)}{f\left[h\left(\frac{1}{p_{i}}\right), 1\right]}$.
■ The elasticity of substitution: $\sigma\left(\frac{1}{p_{i}}\right) \stackrel{\text { def }}{=}-\frac{h^{\prime}\left(\frac{1}{p_{i}}\right) \frac{1}{p_{i}}}{h\left(\frac{1}{p_{i}}\right)}$.
■ The elasticity of the win probability w.r.t. $s_{i}: \varepsilon_{i}(\mathbf{s}) \stackrel{\text { def }}{=} \frac{\partial p_{i}}{\partial s_{i}} \frac{s_{i}}{p_{i}}$.
■ We have that $\eta \in(0, t), \sigma>0$, and $\varepsilon_{i} \in(0,1)$.

- Assumption 1. The production function and the CSF satisfy:
(i) $t \leq 1$ and $\varepsilon_{i}(\mathbf{s}) \eta\left(\frac{1}{p_{i}}\right) \sigma\left(\frac{1}{p_{i}}\right) \leq 2 \quad$ (for all p_{i} and \mathbf{s});

Analysis $(4 / 7)$

Equilibrium existence

Define the following elasticities:

- The elasticity of output w.r.t. $x_{i}: \eta\left(\frac{1}{p_{i}}\right) \stackrel{\text { def }}{=} \frac{f_{1}\left[h\left(\frac{1}{p_{i}}\right), 1\right] h\left(\frac{1}{p_{i}}\right)}{f\left[h\left(\frac{1}{p_{i}}\right), 1\right]}$.
- The elasticity of substitution: $\sigma\left(\frac{1}{p_{i}}\right) \stackrel{\text { def }}{=}-\frac{h^{\prime}\left(\frac{1}{p_{i}}\right) \frac{1}{p_{i}}}{h\left(\frac{1}{p_{i}}\right)}$.

■ The elasticity of the win probability w.r.t. $s_{i}: \varepsilon_{i}(\mathbf{s}) \stackrel{\text { def }}{=} \frac{\partial p_{i}}{\partial s_{i}} \frac{s_{i}}{p_{i}}$.
■ We have that $\eta \in(0, t), \sigma>0$, and $\varepsilon_{i} \in(0,1)$.
■ Assumption 1. The production function and the CSF satisfy:
(i) $t \leq 1$ and $\varepsilon_{i}(\mathbf{s}) \eta\left(\frac{1}{p_{i}}\right) \sigma\left(\frac{1}{p_{i}}\right) \leq 2 \quad$ (for all p_{i} and \mathbf{s});

■ Proposition 1. Suppose Assumption 1 is satisfied. Then there exists a pure strategy Nash equilibrium of the hybrid contest.

- Assume a CES production function, $t=1, r \leq 1$, and

$$
p_{i}(\mathbf{s})=\frac{w_{i} s_{i}^{r}}{\sum_{j=1}^{n} w_{j} s_{j}^{r}} \quad \text { and } \quad p_{i}(0, \cdots, 0)=\frac{w_{i}}{\sum_{j=1}^{n} w_{j}}
$$

Analysis (6/7)

- To check the SOC with Melkoyan's analytical approach is cumbersome and in the end he relies on numerical simulations:
[...] one can demonstrate, after a series of tedious algebraic manipulations, that a player's payoff function is locally concave at the symmetric equilibrium candidate in (7) if and only if [large mathematical expression]. [...] Numerical simulations indicate that this inequality is violated only for extreme values of the parameters [...]. In addition to verifying the local second-order conditions, I have used numerical simulations to verify that the global second-order conditions are satisfied under a wide range of scenarios.

Characterization of equilibrium

- Recall: $\pi_{i}(\mathbf{s})=p_{i}(\mathbf{s}) v_{i}-C_{i}\left[s_{i}, p_{i}(\mathbf{s})\right]$.
- The FOC (with an equality if $s_{i}>0$):

with an equality if $s_{i}>0$.
- Proposition 2. Suppose Assumption 1 is satisfied. Then $s^{*}=\left(s_{1}^{*}, \ldots, s_{n}^{*}\right)$ is a pure strategy Nash equilibrium of the hybrid contest if and only if condition (1) holds, with equality if $s_{i}^{*}>0$, for each contestant i.

Characterization of equilibrium

- Recall: $\pi_{i}(\mathbf{s})=p_{i}(\mathbf{s}) v_{i}-C_{i}\left[s_{i}, p_{i}(\mathbf{s})\right]$.
- The FOC (with an equality if $s_{i}>0$):

$$
\frac{\partial \pi_{i}(\mathbf{s})}{\partial s_{i}}=\frac{\partial p_{i}(\mathbf{s})}{\partial s_{i}} v_{i}-C_{1}\left(s_{i}, p_{i}\right)-C_{2}\left(s_{i}, p_{i}\right) \frac{\partial p_{i}(\mathbf{s})}{\partial s_{i}} \leq 0 .
$$

- Use Shephard's lemma, $C_{2}\left(s_{i}, p_{i}\right)=Y_{i}\left[s_{i}, p_{i}(\mathbf{s})\right]$:

Characterization of equilibrium

- Recall: $\pi_{i}(\mathbf{s})=p_{i}(\mathbf{s}) v_{i}-C_{i}\left[s_{i}, p_{i}(\mathbf{s})\right]$.
- The FOC (with an equality if $s_{i}>0$):

$$
\frac{\partial \pi_{i}(\mathbf{s})}{\partial s_{i}}=\frac{\partial p_{i}(\mathbf{s})}{\partial s_{i}} v_{i}-C_{1}\left(s_{i}, p_{i}\right)-C_{2}\left(s_{i}, p_{i}\right) \frac{\partial p_{i}(\mathbf{s})}{\partial s_{i}} \leq 0 .
$$

- Use Shephard's lemma, $C_{2}\left(s_{i}, p_{i}\right)=Y_{i}\left[s_{i}, p_{i}(\mathbf{s})\right]$:

Characterization of equilibrium

- Recall: $\pi_{i}(\mathbf{s})=p_{i}(\mathbf{s}) v_{i}-C_{i}\left[s_{i}, p_{i}(\mathbf{s})\right]$.

■ The FOC (with an equality if $s_{i}>0$):

$$
\frac{\partial \pi_{i}(\mathbf{s})}{\partial s_{i}}=\frac{\partial p_{i}(\mathbf{s})}{\partial s_{i}} v_{i}-C_{1}\left(s_{i}, p_{i}\right)-C_{2}\left(s_{i}, p_{i}\right) \frac{\partial p_{i}(\mathbf{s})}{\partial s_{i}} \leq 0 .
$$

- Use Shephard's lemma, $C_{2}\left(s_{i}, p_{i}\right)=Y_{i}\left[s_{i}, p_{i}(\mathbf{s})\right]$:

$$
\begin{equation*}
\left[v_{i}-Y_{i}\left(s_{i}, p_{i}(\mathbf{s})\right)\right] \frac{\partial p_{i}(\mathbf{s})}{\partial s_{i}} \leq C_{1}\left(s_{i}, p_{i}\right) \tag{1}
\end{equation*}
$$

with an equality if $s_{i}>0$.

Characterization of equilibrium

\square Recall: $\pi_{i}(\mathbf{s})=p_{i}(\mathbf{s}) v_{i}-C_{i}\left[s_{i}, p_{i}(\mathbf{s})\right]$.

- The FOC (with an equality if $s_{i}>0$):

$$
\frac{\partial \pi_{i}(\mathbf{s})}{\partial s_{i}}=\frac{\partial p_{i}(\mathbf{s})}{\partial s_{i}} v_{i}-C_{1}\left(s_{i}, p_{i}\right)-C_{2}\left(s_{i}, p_{i}\right) \frac{\partial p_{i}(\mathbf{s})}{\partial s_{i}} \leq 0
$$

■ Use Shephard's lemma, $C_{2}\left(s_{i}, p_{i}\right)=Y_{i}\left[s_{i}, p_{i}(\mathbf{s})\right]$:

$$
\begin{equation*}
\left[v_{i}-Y_{i}\left(s_{i}, p_{i}(\mathbf{s})\right)\right] \frac{\partial p_{i}(\mathbf{s})}{\partial s_{i}} \leq C_{1}\left(s_{i}, p_{i}\right) \tag{1}
\end{equation*}
$$

with an equality if $s_{i}>0$.
■ Proposition 2. Suppose Assumption 1 is satisfied. Then $\mathbf{s}^{*}=\left(s_{1}^{*}, \ldots, s_{n}^{*}\right)$ is a pure strategy Nash equilibrium of the hybrid contest if and only if condition (1) holds, with equality if $s_{i}^{*}>0$, for each contestant i.

A Symmetric Hybrid Contest (1/4)

Assumption 2. The CSF is symmetric and homogeneous of degree 0 .

- Note that, thanks to Assumption 2:

- Use this in the FOC and impose symmetry:

- The last equalities are linear in x^{*} and y^{*}, so easy to solve.
- Proposition 3. Within the family of sym. eq., there is a unique pure strategy equilibrium: $s^{*}=f[h(n), 1]\left(y^{*}\right)^{t}, x^{*}=h(n) y^{*}$, and

A Symmetric Hybrid Contest (1/4)

Assumption 2. The CSF is symmetric and homogeneous of degree 0 .

- Note that, thanks to Assumption 2:

$$
\frac{\partial p_{i}(s, s, \ldots, s)}{\partial s_{i}}=\frac{\widehat{\varepsilon}(n)}{n s}, \text { where } \widehat{\varepsilon}(n) \stackrel{\text { def }}{=} \varepsilon_{i}(1,1, \ldots, 1) \text {. }
$$

- Use this in the FOC and impose symmetry:

A Symmetric Hybrid Contest (1/4)

Assumption 2. The CSF is symmetric and homogeneous of degree 0 .

- Note that, thanks to Assumption 2:

$$
\frac{\partial p_{i}(s, s, \ldots, s)}{\partial s_{i}}=\frac{\widehat{\varepsilon}(n)}{n s}, \text { where } \widehat{\varepsilon}(n) \stackrel{\text { def }}{=} \varepsilon_{i}(1,1, \ldots, 1) \text {. }
$$

- Use this in the FOC and impose symmetry:

$$
\left(v-y^{*}\right) \frac{\widehat{\varepsilon}(n)}{n s^{*}}=C_{1}\left[s^{*}, \frac{1}{n}\right]=\frac{1}{t s^{*}} C\left[s^{*}, \frac{1}{n}\right]
$$

- The last equalities are linear in x^{*} and y^{*}, so easy to solve.
- Proposition 3. Within the family of sym. eq., there is a unique pure strategy equilibrium: $s^{*}=f[h(n), 1]\left(y^{*}\right)^{t}, x^{*}=h(n) y^{*}$, and

A Symmetric Hybrid Contest (1/4)

Assumption 2. The CSF is symmetric and homogeneous of degree 0 .

- Note that, thanks to Assumption 2:

$$
\frac{\partial p_{i}(s, s, \ldots, s)}{\partial s_{i}}=\frac{\widehat{\varepsilon}(n)}{n s}, \text { where } \widehat{\varepsilon}(n) \stackrel{\text { def }}{=} \varepsilon_{i}(1,1, \ldots, 1) \text {. }
$$

- Use this in the FOC and impose symmetry:

$$
\left(v-y^{*}\right) \frac{\widehat{\varepsilon}(n)}{n s^{*}}=C_{1}\left[s^{*}, \frac{1}{n}\right]=\frac{1}{t s^{*}} C\left[s^{*}, \frac{1}{n}\right]=\frac{1}{t s^{*}}\left[\frac{y^{*}}{n}+x^{*}\right]
$$

A Symmetric Hybrid Contest (1/4)

Assumption 2. The CSF is symmetric and homogeneous of degree 0 .

- Note that, thanks to Assumption 2:

$$
\frac{\partial p_{i}(s, s, \ldots, s)}{\partial s_{i}}=\frac{\widehat{\varepsilon}(n)}{n s}, \text { where } \widehat{\varepsilon}(n) \stackrel{\text { def }}{=} \varepsilon_{i}(1,1, \ldots, 1) \text {. }
$$

- Use this in the FOC and impose symmetry:

$$
\left(v-y^{*}\right) \frac{\widehat{\varepsilon}(n)}{n s^{*}}=C_{1}\left[s^{*}, \frac{1}{n}\right]=\frac{1}{t s^{*}} C\left[s^{*}, \frac{1}{n}\right]=\frac{1}{t s^{*}}\left[\frac{y^{*}}{n}+x^{*}\right]
$$

A Symmetric Hybrid Contest (1/4)

Assumption 2. The CSF is symmetric and homogeneous of degree 0 .

- Note that, thanks to Assumption 2:

$$
\frac{\partial p_{i}(s, s, \ldots, s)}{\partial s_{i}}=\frac{\widehat{\varepsilon}(n)}{n s}, \text { where } \widehat{\varepsilon}(n) \stackrel{\text { def }}{=} \varepsilon_{i}(1,1, \ldots, 1) \text {. }
$$

- Use this in the FOC and impose symmetry:

$$
\begin{aligned}
& \left(v-y^{*}\right) \frac{\widehat{\varepsilon}(n)}{n s^{*}}=C_{1}\left[s^{*}, \frac{1}{n}\right]=\frac{1}{t s^{*}} C\left[s^{*}, \frac{1}{n}\right]=\frac{1}{t s^{*}}\left[\frac{y^{*}}{n}+x^{*}\right] \\
& \Leftrightarrow\left(v-y^{*}\right) t \widehat{\varepsilon}(n)=y^{*}+n x^{*} \text {. And from before, } x^{*}=h(n) y^{*}
\end{aligned}
$$

A Symmetric Hybrid Contest (1/4)

Assumption 2. The CSF is symmetric and homogeneous of degree 0 .

- Note that, thanks to Assumption 2:

$$
\frac{\partial p_{i}(s, s, \ldots, s)}{\partial s_{i}}=\frac{\widehat{\varepsilon}(n)}{n s}, \text { where } \widehat{\varepsilon}(n) \stackrel{\text { def }}{=} \varepsilon_{i}(1,1, \ldots, 1) \text {. }
$$

- Use this in the FOC and impose symmetry:

$$
\begin{aligned}
& \left(v-y^{*}\right) \frac{\widehat{\varepsilon}(n)}{n s^{*}}=C_{1}\left[s^{*}, \frac{1}{n}\right]=\frac{1}{t s^{*}} C\left[s^{*}, \frac{1}{n}\right]=\frac{1}{t s^{*}}\left[\frac{y^{*}}{n}+x^{*}\right] \\
& \Leftrightarrow\left(v-y^{*}\right) t \widehat{\varepsilon}(n)=y^{*}+n x^{*} . \text { And from before, } x^{*}=h(n) y^{*} .
\end{aligned}
$$

A Symmetric Hybrid Contest (1/4)

Assumption 2. The CSF is symmetric and homogeneous of degree 0 .

- Note that, thanks to Assumption 2:

$$
\frac{\partial p_{i}(s, s, \ldots, s)}{\partial s_{i}}=\frac{\widehat{\varepsilon}(n)}{n s}, \text { where } \widehat{\varepsilon}(n) \stackrel{\text { def }}{=} \varepsilon_{i}(1,1, \ldots, 1) \text {. }
$$

- Use this in the FOC and impose symmetry:

$$
\begin{aligned}
& \left(v-y^{*}\right) \frac{\widehat{\varepsilon}(n)}{n s^{*}}=C_{1}\left[s^{*}, \frac{1}{n}\right]=\frac{1}{t s^{*}} C\left[s^{*}, \frac{1}{n}\right]=\frac{1}{t s^{*}}\left[\frac{y^{*}}{n}+x^{*}\right] \\
& \Leftrightarrow\left(v-y^{*}\right) t \widehat{\varepsilon}(n)=y^{*}+n x^{*} \text {. And from before, } x^{*}=h(n) y^{*} .
\end{aligned}
$$

- The last equalities are linear in x^{*} and y^{*}, so easy to solve.

A Symmetric Hybrid Contest (1/4)

Assumption 2. The CSF is symmetric and homogeneous of degree 0 .

- Note that, thanks to Assumption 2:

$$
\frac{\partial p_{i}(s, s, \ldots, s)}{\partial s_{i}}=\frac{\widehat{\varepsilon}(n)}{n s}, \text { where } \widehat{\varepsilon}(n) \stackrel{\text { def }}{=} \varepsilon_{i}(1,1, \ldots, 1) \text {. }
$$

- Use this in the FOC and impose symmetry:

$$
\begin{aligned}
& \left(v-y^{*}\right) \frac{\widehat{\varepsilon}(n)}{n s^{*}}=C_{1}\left[s^{*}, \frac{1}{n}\right]=\frac{1}{t s^{*}} C\left[s^{*}, \frac{1}{n}\right]=\frac{1}{t s^{*}}\left[\frac{y^{*}}{n}+x^{*}\right] \\
& \Leftrightarrow\left(v-y^{*}\right) t \widehat{\varepsilon}(n)=y^{*}+n x^{*} . \text { And from before, } x^{*}=h(n) y^{*} .
\end{aligned}
$$

- The last equalities are linear in x^{*} and y^{*}, so easy to solve.
- Proposition 3. Within the family of sym. eq., there is a unique pure strategy equilibrium: $s^{*}=f[h(n), 1]\left(y^{*}\right)^{t}, x^{*}=h(n) y^{*}$, and

$$
y^{*}=\frac{t \hat{\varepsilon}(n) v}{1+n h(n)+t \hat{\varepsilon}(n)} .
$$

- Proposition 4. Effect of more contestants on x^{*} and y^{*} :

$$
\begin{aligned}
\frac{\partial x^{*}}{\partial n}<0 \Leftrightarrow \sigma(n)>- & \frac{n(n-2) h(n)-1}{(n-1)[1+t \widehat{\varepsilon}(n)]} \\
& \frac{\partial y^{*}}{\partial n}>0 \Leftrightarrow \sigma(n)>\frac{n(n-2) h(n)-1}{(n-1) n h(n)}
\end{aligned}
$$

and if $\sigma(n) \geq 1$, then necessarily $\frac{\partial x^{*}}{\partial n}<0$ and $\frac{\partial y^{*}}{\partial n}>0$.
■ In order to understand the above:

- More contestants means a lower probability of winning.
- This lowers the relative cost of investing in y_{i}.

■ So whenever $\sigma(n)$ is sufficiently large, $\frac{\partial y^{*}}{\partial n}>0$ and $\frac{\partial x^{*}}{\partial n}<0$.

- But if $\sigma(n)$ small, the derivatives must have the same sign. For:

$$
\left.\frac{\partial y^{*}}{\partial n} \frac{n}{y^{*}}=\sigma(n)+\frac{\partial x^{*}}{\partial n} \frac{n}{x^{*}} \quad \text { (follows from } x^{*}=h(n) y^{*}\right)
$$

As $\sigma(n) \rightarrow 0$, the production function requires x_{i} and y_{i} to be used in fixed proportions (a Leontief production technology).

- The total amount of equilibrium expenditures in the symmetric hybrid model is defined as $R^{\mathrm{H}} \stackrel{\text { def }}{=} n C\left[s^{*}, \frac{1}{n}\right]$.
- The corresponding amount in the all-pay contest: $R^{\mathrm{A}}=t \hat{\varepsilon}(n) v$.
- Proposition 5, part (a). In the symmetric model:

$$
R^{\mathrm{H}}=\left(1-\frac{y^{*}}{v}\right) R^{\mathrm{A}}=\left[\frac{1}{v[1+n h(n)]}+\frac{1}{R^{\mathrm{A}}}\right]^{-1} .
$$

In particular, for any finite n, we have $R^{H}<R^{\mathrm{A}}$.

- The payoff suggests the intuition: $\pi_{i}=\left(v_{i}-y_{i}\right) p_{i}(\mathbf{s})-x_{i}$.
\square
- The total amount of equilibrium expenditures in the symmetric hybrid model is defined as $R^{H} \stackrel{\text { def }}{=} n C\left[s^{*}, \frac{1}{n}\right]$.
■ The corresponding amount in the all-pay contest: $R^{\mathrm{A}}=t \hat{\varepsilon}(n) v$.
- Proposition 5, part (a). In the symmetric model:

$$
R^{\mathrm{H}}=\left(1-\frac{y^{*}}{v}\right) R^{\mathrm{A}}=\left[\frac{1}{v[1+n h(n)]}+\frac{1}{R^{\mathrm{A}}}\right]^{-1} .
$$

In particular, for any finite n, we have $R^{\mathrm{H}}<R^{\mathrm{A}}$.

- The payoff suggests the intuition: $\pi_{i}=\left(v_{i}-y_{i}\right) p_{i}(\mathbf{s})-x_{i}$.
- Proposition 5, part (b). In the symmetric model, suppose $p_{i}(\mathbf{s})=\phi\left(s_{i}\right) / \sum_{j=1}^{n} \phi\left(s_{j}\right)$, where ϕ is a strictly increasing and concave function satisfying $\phi(0)=0$.
- Then R^{H} is weakly increasing in n if and only if: (i)

$$
\begin{equation*}
\sigma(n) \leq 1+\frac{4 n}{\operatorname{tr}(n-1)^{2}} ; \tag{2}
\end{equation*}
$$

or (ii) inequality (2) is violated and $h(n) \notin\left(\bar{亏}_{L}, \bar{\Xi}_{H}\right)$. See figure!

A Symmetric Hybrid Contest (4/4)

Illustration of result (b)

- Assume CES, $t=1$, and $n=10$.

Asymmetric Hybrid Contests (1/2)

■ I assume $n=2$ and I study three models:

- The CSF is biased in favor of one contestant.
- One contestant has a higher valuation than the other.
- I also endogenize the degree of bias.
- Assumption 3. The CSF is given by

- The following three equations define equilibrium values of p_{1}^{*}, y_{1}^{*}, and y_{2}^{*}

Asymmetric Hybrid Contests (1/2)

■ I assume $n=2$ and I study three models:

- The CSF is biased in favor of one contestant.
- One contestant has a higher valuation than the other.
- I also endogenize the degree of bias.

■ Assumption 3. The CSF is given by

$$
p_{i}(\mathbf{s})=\frac{w_{i} s_{i}^{r}}{w_{1} s_{1}^{r}+w_{2} s_{2}^{r}}
$$

The following three equations define

$$
y_{i}^{*}=\frac{r t p_{i}^{*}\left(1-p_{i}^{*}\right) v_{i}}{r t p_{i}^{*}\left(1-p_{i}^{*}\right)+p_{i}^{*}+h\left(\frac{1}{p_{i}^{*}}\right)}
$$

Asymmetric Hybrid Contests (1/2)

■ I assume $n=2$ and I study three models:

- The CSF is biased in favor of one contestant.
- One contestant has a higher valuation than the other.
- I also endogenize the degree of bias.

■ Assumption 3. The CSF is given by

$$
p_{i}(\mathbf{s})=\frac{w_{i} s_{i}^{r}}{w_{1} s_{1}^{r}+w_{2} s_{2}^{r}}
$$

- The following three equations define equilibrium values of p_{1}^{*}, y_{1}^{*}, and y_{2}^{*} :

$$
\begin{aligned}
& y_{i}^{*}=\frac{r t p_{i}^{*}\left(1-p_{i}^{*}\right) v_{i}}{r t p_{i}^{*}\left(1-p_{i}^{*}\right)+p_{i}^{*}+h\left(\frac{1}{p_{i}^{*}}\right)}, \quad \text { for } i=1,2, \text { and } \Upsilon\left(p_{1}^{*}\right)=0, \text { where } \\
& \Upsilon\left(p_{1}\right) \stackrel{\text { def }}{=} \frac{\frac{w_{2} r_{2}^{r t}}{w_{1} v_{1}^{t}} p_{1} f\left[h\left(\frac{1}{1-p_{1}}\right), 1\right]^{r}}{\left[r t p_{1}\left(1-p_{1}\right)+1-p_{1}+h\left(\frac{1}{1-p_{1}}\right)\right]^{r t}}-\frac{\left(1-p_{1}\right) f\left[h\left(\frac{1}{p_{1}}\right), 1\right]^{r}}{\left[r t p_{1}\left(1-p_{1}\right)+p_{1}+h\left(\frac{1}{p_{1}}\right)\right]^{r t}}
\end{aligned}
$$

- The equilibrium is unique if $r \eta\left(\frac{1}{p_{i}}\right) \sigma\left(\frac{1}{p_{i}}\right) \leq 1$.

Asymmetric Hybrid Contests (2/4)

A Biased decision process ($w_{1} \neq w_{2}$ but $v_{1}=v_{2}$)

- Among the results:
(a) $p_{1}^{*}>p_{2}^{*} \Leftrightarrow y_{1}^{*}<y_{2}^{*} \Leftrightarrow C\left(s_{1}^{*}, p_{1}^{*}\right)>C\left(s_{2}^{*}, p_{2}^{*}\right)$.
(b) Evaluated at symmetry $\left(w_{1}=w_{2}\right): \frac{\partial p_{1}^{*}}{\partial w_{1}}>0$,

$$
\frac{\partial y_{1}^{*}}{\partial w_{1}}<0, \quad \frac{\partial y_{2}^{*}}{\partial w_{1}}>0, \quad \frac{\partial x_{1}^{*}}{\partial w_{1}}>0 \Leftrightarrow \frac{\partial x_{2}^{*}}{\partial w_{1}}<0 \Leftrightarrow \sigma(2)>\frac{2}{2+r t} .
$$

Different valuations ($v_{1} \neq v_{2}$ but $w_{1}=w_{2}$)

- Among the results:

Asymmetric Hybrid Contests (2/4)

A Biased decision process ($w_{1} \neq w_{2}$ but $v_{1}=v_{2}$)

- Among the results:
(a) $p_{1}^{*}>p_{2}^{*} \Leftrightarrow y_{1}^{*}<y_{2}^{*} \Leftrightarrow C\left(s_{1}^{*}, p_{1}^{*}\right)>C\left(s_{2}^{*}, p_{2}^{*}\right)$.
(b) Evaluated at symmetry $\left(w_{1}=w_{2}\right): \frac{\partial p_{1}^{*}}{\partial w_{1}}>0$,

$$
\frac{\partial y_{1}^{*}}{\partial w_{1}}<0, \quad \frac{\partial y_{2}^{*}}{\partial w_{1}}>0, \quad \frac{\partial x_{1}^{*}}{\partial w_{1}}>0 \Leftrightarrow \frac{\partial x_{2}^{*}}{\partial w_{1}}<0 \Leftrightarrow \sigma(2)>\frac{2}{2+r t} .
$$

Different valuations ($v_{1} \neq v_{2}$ but $w_{1}=w_{2}$)

- Among the results:
(a) $p_{1}^{*}>p_{2}^{*} \Leftrightarrow \frac{y_{1}^{*}}{v_{1}}<\frac{y_{2}^{*}}{v_{2}}$.
(b) $v_{1}-y_{1}^{*}>v_{2}-y_{2}^{*{ }^{2}} \Leftrightarrow C\left(s_{1}^{*}, p_{1}^{*}\right)>C\left(s_{2}^{*}, p_{2}^{*}\right)$.

An Endogenous Bias (w_{1} chosen, but $v_{1} \geq v_{2}$ and w_{2} fixed)

- Timing of events in the game:

1 A principal chooses w_{1} to maximize $R^{H}=C\left(s_{1}^{*}, p_{1}^{*}\right)+C\left(s_{2}^{*}, p_{2}^{*}\right)$.
$2 w_{1}$ becomes common knowledge and the contestants interact as in the previous analysis.

- Assumption 3. The production function is of Cobb-Douglas form: $f\left(x_{i}, y_{i}\right)=x_{i}^{\alpha} y_{i}^{\beta}$, for $\alpha>0$ and $\beta>0$.

An Endogenous Bias (w_{1} chosen, but $v_{1} \geq v_{2}$ and w_{2} fixed)

- Timing of events in the game:

1 A principal chooses w_{1} to maximize $R^{H}=C\left(s_{1}^{*}, p_{1}^{*}\right)+C\left(s_{2}^{*}, p_{2}^{*}\right)$.
$2 w_{1}$ becomes common knowledge and the contestants interact as in the previous analysis.

- Assumption 3. The production function is of Cobb-Douglas form: $f\left(x_{i}, y_{i}\right)=x_{i}^{\alpha} y_{i}^{\beta}$, for $\alpha>0$ and $\beta>0$.
■ Results: The equilibrium values of p_{1} and w_{1} satisfy:
■ If $v_{1}=v_{2}$, then $\widehat{p}_{1}=\frac{1}{2}$ and $\widehat{w}_{1}=w_{2}$.
- If $v_{1}>v_{2}$, then $\hat{p}_{1}>\frac{1}{2}$.

■ If $v_{1}>v_{2}$, then $\widehat{w}_{1}<w_{2}$ at least if $\left|v_{1}-v_{2}\right|$ is very small or big.
■ My intuition for results:

- Contestant 1 is more valuable as a contributor (as $v_{1}>v_{2}$).

■ Hence, she should be encouraged to use x_{1}, as all-pay investments are more conducive to large expenditures.

- This is achieved by making winner-pay inv. costly: $\widehat{p}_{1}>\frac{1}{2}$.
- To generate $\widehat{p}_{1}>\frac{1}{2}, v_{1}>v_{2}$ is more than enough, so bias can be in favor of Contestant 2.
- Might not be robust.

Numerical example $\left(t=r=v_{2}=w_{2}=1\right)$
$■$ Plot of plot \widehat{p}_{1} and \widehat{w}_{1} against v_{1} for three different values of α : 0.9 (the blue, dotted curve), 0.5 (the green, dashed curve), and 0.1 (the red, solid curve).

(a) The high-valuation contestant's probability of winning.

(b) The weight in the CSF that is assigned to the high-valuation contestant's score.

Main results and contributions: $(1 / 1)$

1 The analytical approach (borrowing from producer theory):
■ \rightarrow Generality, tractability, and an existence condition.
2 A larger n leads to substitution away from all-pay investments.

- But only if the elasticity of substitution is large enough.

3 Total expenditures always lower in hybrid contest than in all-pay.
4 Total exp'tures can be decreasing in n (also shown by Melkoyan).
5 Asym. contests (in terms of valuations and bias): Sharp predictions about relative size of investm's and of expenditures.

6 Endogenous bias: High-valuation contestant more likely to win but the bias is against her (the latter might not be robust).

Possible avenues for future work $(1 / 1)$

1 Sequential moves: first $\left(x_{1}, y_{1}\right)$, then $\left(x_{2}, y_{2}\right)$.
2 Applying the producer theory approach to other contest models with multiple influence channels.

3 Experimental testing.

- Relatively sharp predictions.

■ But risk neutrality might be an issue?

4 Further work on asymmetric contests.

- More than two contestants.

■ Can a contestant be hurt by a bias in favor of her?

- Can a contestant benefit from an increase in rival's valuation?

5 Contest design in broader settings.

