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Introduction: What is a hybrid contest? (1/2)

A hybrid contest:
In some economic, social, or political situation, each one of a
number of economic agents try to win an indivisible prize.
To increase her probability of winning, each contestant makes
both all-pay investments and winner-pay investments.

Example: The competitive bidding to host the Olympic games.

All-pay investments : Candidate cities spend money upfront,
with the goal of persuading members of the IOC.
Winner-pay investments : A city commits to build new stadia
and invest in safety arrangements if being awarded the Games.

To fix ideas, consider the following formalization:
Contestant i chooses xi ≥ 0 and yi ≥ 0 to maximize

πi = (vi − yi ) pi (s1, s2, . . . sn) − xi ,

subject to si = f (xi , yi ).
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Introduction: Other examples (2/2)

Competition for a government contract or grant:

All-pay investments : Time/effort spent on preparing proposal.
Winner-pay investments : Commit to ambitious customer service.

A political election:

All-pay investments : Campaign expenditures.
Winner-pay investments : Electoral promises (costly if they
deviate from the politician’s own ideal policy).

Rent seeking to win monopoly rights of a regulated market:

All-pay investments : Ex ante bribes (how Tullock modeled it).
Winner-pay investments : Conditional bribes.

Tullock’s motivation:

Empirical studies in the 1950s: DWL appears to be tiny.
Tullock: Maybe a part of profits adds to the cost of monopoly.
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Literature Review (1/2)

Two earlier papers that model a hybrid contest:

Haan and Schonbeek (2003).
They assume Cobb-Douglas—which here is quite restrictive.

Melkoyan (2013).
CES but with σ ≥ 1. Symmetric model. Hard to check SOC.
My analysis: (i) other approach which yields easy-to-check
existence condition; (ii) assumes general production function and
CSF; (iii) studies both symmetric and asymmetric models.

Other contest models with more than one influence channel:

Sabotage in contests (improve own performance and sabotage
the others performance): Konrad (2000), Chen (2003).
War and conflict (choice of production and appropriation):
Hirschleifer (1991) and Skaperdas and Syroploulos (1997).
Multiple all-pay “arms” (maybe with different costs):
Arbatskaya and Mialon (2010).

J. Lagerlöf (U of Copenhagen) Hybrid All-Pay and Winner-Pay Contests June 5, 2018 4 / 24



Literature Review (1/2)

Two earlier papers that model a hybrid contest:

Haan and Schonbeek (2003).
They assume Cobb-Douglas—which here is quite restrictive.

Melkoyan (2013).
CES but with σ ≥ 1. Symmetric model. Hard to check SOC.
My analysis: (i) other approach which yields easy-to-check
existence condition; (ii) assumes general production function and
CSF; (iii) studies both symmetric and asymmetric models.

Other contest models with more than one influence channel:

Sabotage in contests (improve own performance and sabotage
the others performance): Konrad (2000), Chen (2003).
War and conflict (choice of production and appropriation):
Hirschleifer (1991) and Skaperdas and Syroploulos (1997).
Multiple all-pay “arms” (maybe with different costs):
Arbatskaya and Mialon (2010).

J. Lagerlöf (U of Copenhagen) Hybrid All-Pay and Winner-Pay Contests June 5, 2018 4 / 24



Literature Review (2/2)

Multidimensional (procurement) auctions:

Che (2003), Branck (1997), Asker and Cantillon (2008).
Firms bid on both price and (many dimensions of) quality.
The components of each bid jointly determine a score.
Auctioneer chooses bidder with highest score.

Differences:

In their models, not both all-pay and winner-pay ingredients.
Not a probabilistic CSF.

Optimal design of a research contest: Che and Gale (2003).

A principal wants to procure an innovation.
Fimrs choose both quality of innovation and the prize if winning.
Thus, effectively, both all-pay and winner-pay ingredients.
Differences: Not a probabilistic CSF (so mixed strategy eq.),
linear production function, mechanism design approach.
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A model of a hybrid contest (1/2)

n ≥ 2 contestants try to win an indivisible prize.

Contestant i chooses xi ≥ 0 and yi ≥ 0 to maximize the
following expected payoff:

πi = (vi − yi) pi (s) − xi , subject to si = f (xi , yi) ,

where s = (s1, s2, . . . , sn) and si ≥ 0 is contestant i ’s score.

vi > 0 is i ’s valuation of the prize.
pi (s) is i ’s prob. of winning (or contest success function, CSF).
xi is the all-pay investment: paid whether i wins or not.
yi is the winner-pay investment: paid i.f.f. i wins.

It is a one-shot game where the contestants choose their
investments (xi , yi) simultaneously with each other.
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A model of a hybrid contest (2/2)

Assumptions about pi(s):
Twice continuously differentiable in its arguments.
Strictly increasing and strictly concave in si .
Strictly decreasing in sj for all j 6= i .
The contest is won by someone:

∑n
j=1 pj(s) = 1.

Later I assume that pi (s) is homogeneous in s.
Assumptions about f (xi , yi):

Thrice continuously differentiable in its arguments.
Strictly increasing in each of its arguments.
Strictly quasiconcave.
Homogeneous of degree t > 0: ∀k > 0 f (kxi , kyi ) = k t f (xi , yi ).
Inada conditions to rule out xi = 0 or yi = 0.

Examples:

pi(s) =
wis

r
i∑n

j=1 wjs r
j

, f (xi , yi) =
[
αx

σ−1
σ + (1 − α)y

σ−1
σ

] tσ
σ−1
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Analysis (1/7)

One possible approach:

Plug the production function into the CSF.
Take FOCs w.r.t. xi and yi .
Used by Haan and Schoonbeek (2003) and Melkoyan (2013),
assuming Cobb-Douglas and CES, respectively.

My approach: Solve for contestant i ’s best reply in two steps:

1 Compute the conditional factor demands.

That is, derive optimal xi and yi , given s (so also given si ).

2 Plug the factor demands into the payoff and then characterize
contestant i ’s optimal score si (given s−i).

Important advantage: a single choice variable at 2, so easier to
determine what conditions are required for equilibrium existence.
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Contestant i solves (for fixed pi ): minxi ,yi piyi + xi , subject to f (xi , yi ) = si .

The first-order conditions (λi is the Lagrange multiplier):

∂Li

∂xi
= 1 − λi f1 (xi , yi ) = 0,

∂Li

∂yi
= pi − λi f2 (xi , yi ) = 0.

So, by combining the FOCs:

1

pi
=

f1 (xi , yi )

f2 (xi , yi )
def
= g

(
xi

yi

)

⇒ xi = yih

(
1

pi

)

,

where h is the inverse of g (i.e., h
def
= g−1).

By plugging back into si = f (xi , yi ) and rewriting, we obtain:

Yi (si , pi ) =

[
si

f (h (1/pi ) , 1)

] 1
t

, Xi (si , pi ) = Yi (si , pi ) h

(
1

pi

)

.

Contestant i ’s payoff: πi (s) = pi (s) vi − Ci [si , pi (s)], where

Ci [si , pi (s)]
def
= pi (s) Yi [si , pi (s)] + Xi [si , pi (s)] .

A Nash equilibrium of the hybrid contest:

A profile s∗ such that πi (s
∗) ≥ πi

(
si , s

∗
−i

)
, all i and all si ≥ 0.
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Analysis (3/7)

The cost-minimization problem and the h function

xi

yi

slope = − 1
pi

slope = −g
(

xi

yi

)

si = f (xi , yi )

X

Y

(a) Cost
minimization.

xi

yi

m

g
(

xi

yi

)

45◦

(b) Graph of the g
function.

m

xi

yi

h (m) 45◦

(c) Graph of the h
function.
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Analysis (4/7)

Equilibrium existence

Define the following elasticities:

The elasticity of output w.r.t. xi : η
(

1
pi

)
def
=

f1
[
h
(

1
pi

)
,1
]
h
(

1
pi

)

f
[
h
(

1
pi

)
,1
] .

The elasticity of substitution: σ
(

1
pi

)
def
= −

h′
(

1
pi

)
1
pi

h
(

1
pi

) .

The elasticity of the win probability w.r.t. si : εi (s)
def
= ∂pi

∂si

si
pi

.

We have that η ∈ (0, t), σ > 0, and εi ∈ (0, 1).

Assumption 1. The production function and the CSF satisfy:

(i) t ≤ 1 and εi (s) η
(

1
pi

)
σ
(

1
pi

)
≤ 2 (for all pi and s);

Proposition 1. Suppose Assumption 1 is satisfied. Then there
exists a pure strategy Nash equilibrium of the hybrid contest.
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J. Lagerlöf (U of Copenhagen) Hybrid All-Pay and Winner-Pay Contests June 5, 2018 11 / 24



Analysis (4/7)

Equilibrium existence

Define the following elasticities:

The elasticity of output w.r.t. xi : η
(

1
pi

)
def
=

f1
[
h
(

1
pi

)
,1
]
h
(

1
pi

)

f
[
h
(

1
pi

)
,1
] .

The elasticity of substitution: σ
(

1
pi

)
def
= −

h′
(

1
pi

)
1
pi

h
(

1
pi

) .

The elasticity of the win probability w.r.t. si : εi (s)
def
= ∂pi

∂si

si
pi

.

We have that η ∈ (0, t), σ > 0, and εi ∈ (0, 1).

Assumption 1. The production function and the CSF satisfy:

(i) t ≤ 1 and εi (s) η
(

1
pi

)
σ
(

1
pi

)
≤ 2 (for all pi and s);

Proposition 1. Suppose Assumption 1 is satisfied. Then there
exists a pure strategy Nash equilibrium of the hybrid contest.
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Assume a CES production function, t = 1, r ≤ 1, and

pi(s) =
wis

r
i∑n

j=1 wjs r
j

and pi(0, ∙ ∙ ∙ , 0) =
wi∑n
j=1 wj

.

σ

α

0 2
r

4
r

σ∗ 15
r

20
r

0

1
4

α∗

3
4

1

Θ(σ, r)
def
=

( 2
rσ−2)

1
σ

1+( 2
rσ−2)

1
σ

Assumption 1 satisfied
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Analysis (6/7)

To check the SOC with Melkoyan’s analytical approach is
cumbersome and in the end he relies on numerical simulations:

[. . . ] one can demonstrate, after a series of tedious algebraic
manipulations, that a player’s payoff function is locally concave at the
symmetric equilibrium candidate in (7) if and only if [large
mathematical expression]. [. . . ] Numerical simulations indicate that
this inequality is violated only for extreme values of the parameters
[. . . ]. In addition to verifying the local second-order conditions, I have
used numerical simulations to verify that the global second-order
conditions are satisfied under a wide range of scenarios.
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Characterization of equilibrium

Recall: πi (s) = pi (s) vi − Ci [si , pi (s)].

The FOC (with an equality if si > 0):

∂πi (s)

∂si
=

∂pi (s)

∂si
vi − C1 (si , pi) − C2 (si , pi)

∂pi (s)

∂si
≤ 0.

Use Shephard’s lemma, C2 (si , pi) = Yi [si , pi (s)]:

[vi − Yi (si , pi (s))]
∂pi (s)

∂si
≤ C1 (si , pi) , (1)

with an equality if si > 0.

Proposition 2. Suppose Assumption 1 is satisfied. Then
s∗ = (s∗1 , . . . , s∗n) is a pure strategy Nash equilibrium of the
hybrid contest if and only if condition (1) holds, with equality if
s∗i > 0, for each contestant i .
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A Symmetric Hybrid Contest (1/4)

Assumption 2. The CSF is symmetric and homogeneous of degree 0.

Note that, thanks to Assumption 2:

∂pi(s, s, . . . , s)

∂si
=

ε̂(n)

ns
, where ε̂(n)

def
= εi (1, 1, . . . , 1) .

Use this in the FOC and impose symmetry:

(v − y ∗)
ε̂(n)

ns∗
= C1

[

s∗,
1

n

]

=
1

ts∗
C

[

s∗,
1

n

]

=
1

ts∗

[
y ∗

n
+ x∗

]

⇔ (v − y ∗) t ε̂(n) = y ∗ + nx∗. And from before, x∗ = h(n)y ∗.
The last equalities are linear in x∗ and y ∗, so easy to solve.
Proposition 3. Within the family of sym. eq., there is a unique
pure strategy equilibrium: s∗ = f [h(n), 1] (y ∗)t , x∗ = h(n)y ∗, and

y ∗ =
t ε̂(n)v

1 + nh(n) + t ε̂(n)
.
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J. Lagerlöf (U of Copenhagen) Hybrid All-Pay and Winner-Pay Contests June 5, 2018 15 / 24



A Symmetric Hybrid Contest (1/4)

Assumption 2. The CSF is symmetric and homogeneous of degree 0.

Note that, thanks to Assumption 2:

∂pi(s, s, . . . , s)

∂si
=

ε̂(n)

ns
, where ε̂(n)

def
= εi (1, 1, . . . , 1) .

Use this in the FOC and impose symmetry:

(v − y ∗)
ε̂(n)

ns∗
= C1

[

s∗,
1

n

]

=
1

ts∗
C

[

s∗,
1

n

]

=
1

ts∗

[
y ∗

n
+ x∗

]

⇔ (v − y ∗) t ε̂(n) = y ∗ + nx∗. And from before, x∗ = h(n)y ∗.
The last equalities are linear in x∗ and y ∗, so easy to solve.
Proposition 3. Within the family of sym. eq., there is a unique
pure strategy equilibrium: s∗ = f [h(n), 1] (y ∗)t , x∗ = h(n)y ∗, and

y ∗ =
t ε̂(n)v

1 + nh(n) + t ε̂(n)
.
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Proposition 4. Effect of more contestants on x∗ and y ∗:

∂x∗

∂n
< 0 ⇔ σ(n) > −

n (n − 2) h(n) − 1

(n − 1) [1 + t ε̂(n)]
,

∂y ∗

∂n
> 0 ⇔ σ(n) >

n(n − 2)h(n) − 1

(n − 1)nh(n)
;

and if σ(n) ≥ 1, then necessarily ∂x∗

∂n
< 0 and ∂y∗

∂n
> 0.

In order to understand the above:
More contestants means a lower probability of winning.
This lowers the relative cost of investing in yi .
So whenever σ(n) is sufficiently large, ∂y∗

∂n > 0 and ∂x∗

∂n < 0.
But if σ(n) small, the derivatives must have the same sign. For:

∂y∗

∂n

n

y∗ = σ(n) +
∂x∗

∂n

n

x∗ (follows from x∗ = h(n)y∗).

As σ(n) → 0, the production function requires xi and yi to be
used in fixed proportions (a Leontief production technology).
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The total amount of equilibrium expenditures in the symmetric
hybrid model is defined as RH def

= nC
[
s∗, 1

n

]
.

The corresponding amount in the all-pay contest: RA = t ε̂(n)v .
Proposition 5, part (a). In the symmetric model:

RH = (1 −
y ∗

v
)RA =

[
1

v [1 + nh(n)]
+

1

RA

]−1

.

In particular, for any finite n, we have RH < RA.

The payoff suggests the intuition: πi = (vi − yi ) pi (s) − xi .

Proposition 5, part (b). In the symmetric model, suppose
pi(s) = φ(si)/

∑n
j=1 φ(sj), where φ is a strictly increasing and

concave function satisfying φ(0) = 0.

Then RH is weakly increasing in n if and only if: (i)

σ (n) ≤ 1 +
4n

tr (n − 1)2
; (2)

or (ii) inequality (2) is violated and h (n) /∈ (ΞL, ΞH). See figure!
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A Symmetric Hybrid Contest (4/4)

Illustration of result (b)

Assume CES, t = 1, and n = 10.

σ

α

0 2 41.494
0

1
4

1
2

3
4

1

Assumption 1 satisfied

RH decreasing in n at n = 10
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Asymmetric Hybrid Contests (1/2)

I assume n = 2 and I study three models:
The CSF is biased in favor of one contestant.
One contestant has a higher valuation than the other.
I also endogenize the degree of bias.

Assumption 3. The CSF is given by

pi(s) =
wis

r
i

w1s r
1 + w2s r

2

.

The following three equations define equilibrium values of p∗
1 , y∗

1 , and y∗
2 :

y∗
i =

rtp∗
i (1 − p∗

i )vi

rtp∗
i (1 − p∗

i ) + p∗
i + h

(
1
p∗

i

) , for i = 1, 2, and Υ(p∗
1 ) = 0, where

Υ(p1)
def
=

w2vrt
2

w1vrt
1

p1f
[
h
(

1
1−p1

)
, 1
]r

[
rtp1(1 − p1) + 1 − p1 + h

(
1

1−p1

)]rt −
(1 − p1)f

[
h
(

1
p1

)
, 1
]r

[
rtp1(1 − p1) + p1 + h

(
1
p1

)]rt .

The equilibrium is unique if rη
(

1
pi

)
σ
(

1
pi

)
≤ 1.
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Asymmetric Hybrid Contests (2/4)

A Biased decision process (w1 6= w2 but v1 = v2)

Among the results:

(a) p∗
1 > p∗

2 ⇔ y∗
1 < y∗

2 ⇔ C (s∗1 , p∗
1) > C (s∗2 , p∗

2).

(b) Evaluated at symmetry (w1 = w2):
∂p∗

1
∂w1

> 0,

∂y∗
1

∂w1
< 0,

∂y∗
2

∂w1
> 0,

∂x∗
1

∂w1
> 0 ⇔

∂x∗
2

∂w1
< 0 ⇔ σ(2) >

2

2 + rt
.

Different valuations (v1 6= v2 but w1 = w2)

Among the results:

(a) p∗
1 > p∗

2 ⇔ y∗
1

v1
<

y∗
2

v2
.

(b) v1 − y∗
1 > v2 − y∗

2 ⇔ C (s∗1 , p∗
1) > C (s∗2 , p∗

2).
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Among the results:

(a) p∗
1 > p∗

2 ⇔ y∗
1 < y∗

2 ⇔ C (s∗1 , p∗
1) > C (s∗2 , p∗

2).

(b) Evaluated at symmetry (w1 = w2):
∂p∗

1
∂w1

> 0,

∂y∗
1

∂w1
< 0,

∂y∗
2

∂w1
> 0,

∂x∗
1

∂w1
> 0 ⇔

∂x∗
2

∂w1
< 0 ⇔ σ(2) >

2

2 + rt
.

Different valuations (v1 6= v2 but w1 = w2)

Among the results:

(a) p∗
1 > p∗

2 ⇔ y∗
1

v1
<

y∗
2

v2
.

(b) v1 − y∗
1 > v2 − y∗

2 ⇔ C (s∗1 , p∗
1) > C (s∗2 , p∗

2).
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An Endogenous Bias (w1 chosen, but v1 ≥ v2 and w2 fixed)
Timing of events in the game:

1 A principal chooses w1 to maximize RH = C (s∗1 , p∗
1)+C (s∗2 , p∗

2).
2 w1 becomes common knowledge and the contestants interact as

in the previous analysis.

Assumption 3. The production function is of Cobb-Douglas
form: f (xi , yi) = xα

i yβ
i , for α > 0 and β > 0.

Results: The equilibrium values of p1 and w1 satisfy:
If v1 = v2, then p̂1 = 1

2 and ŵ1 = w2.
If v1 > v2, then p̂1 > 1

2 .
If v1 > v2, then ŵ1 < w2 at least if |v1 − v2| is very small or big.

My intuition for results:
Contestant 1 is more valuable as a contributor (as v1 > v2).
Hence, she should be encouraged to use x1, as all-pay
investments are more conducive to large expenditures.
This is achieved by making winner-pay inv. costly: p̂1 > 1

2 .
To generate p̂1 > 1

2 , v1 > v2 is more than enough, so bias can
be in favor of Contestant 2.

Might not be robust.
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Numerical example (t = r = v2 = w2 = 1)

Plot of plot p̂1 and ŵ1 against v1 for three different values of α:
0.9 (the blue, dotted curve), 0.5 (the green, dashed curve), and
0.1 (the red, solid curve).

v1

p̂1

0
012345678910

.50

.55

(a) The high-valuation
contestant’s probability of
winning.

v1

ŵ1

012345678910
0

.25

.50

.75

1

(b) The weight in the CSF that is
assigned to the high-valuation
contestant’s score.
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Main results and contributions: (1/1)

1 The analytical approach (borrowing from producer theory):

→ Generality, tractability, and an existence condition.

2 A larger n leads to substitution away from all-pay investments.

But only if the elasticity of substitution is large enough.

3 Total expenditures always lower in hybrid contest than in all-pay.

4 Total exp’tures can be decreasing in n (also shown by Melkoyan).

5 Asym. contests (in terms of valuations and bias): Sharp
predictions about relative size of investm’s and of expenditures.

6 Endogenous bias: High-valuation contestant more likely to win
but the bias is against her (the latter might not be robust).
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Possible avenues for future work (1/1)

1 Sequential moves: first (x1, y1), then (x2, y2).

2 Applying the producer theory approach to other contest models
with multiple influence channels.

3 Experimental testing.

Relatively sharp predictions.
But risk neutrality might be an issue?

4 Further work on asymmetric contests.

More than two contestants.
Can a contestant be hurt by a bias in favor of her?
Can a contestant benefit from an increase in rival’s valuation?

5 Contest design in broader settings.
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