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Abstract

In many contests in economic and political life, both all-pay and winner-pay expendi-

tures matter for winning. This paper studies such hybrid contests under symmetry and

asymmetry. The symmetric model assumes very little structure but yields a simple closed-

form solution. More contestants tend to lead to substitution toward winner-pay invest-

ments, and total expenditures are always lower than in the corresponding all-pay con-

test. With a biased decision process and two contestants, the favored contestant wins with

a higher likelihood, chooses less winner-pay investments, and contributes more to total

expenditures. An endogenous bias that maximizes total expenditures disfavors the high-

valuation contestant but still makes her the more likely one to win.
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As defined by the dictionary, a contest is “a struggle for superiority or victory between ri-

vals” (Soukhanov, 1992). Situations that involve such contests are commonplace in economic

and political life. Examples include marketing, advertising, litigation, relative reward schemes

in firms, beauty contests between firms, rent-seeking for rents allocated by a public regulator,

political competition, patent races, sports, military combat, and war.1 Indeed, there exists a

vast theoretical literature that studies contests by modeling them as a non-cooperative game.2

A common approach is to assume that each one of a number of contestants chooses an effort

level. Through a postulated contest success function (CSF), the effort levels jointly determine

the probability that a given contestant wins the contest. The winner is awarded a prize. Within

this framework, scholars have studied questions about, for example, how much effort an indi-

vidual contestant exerts, how the sum of effort costs relates to the value of the prize (i.e., the

dissipation rate), and how individual and total effort costs are affected by an increase in the

number of contestants and by changes in the design of the contest (e.g., the timing of the game

or alternative prize structures).

One feature of the above, standard, framework is that each contestant’s effort is modeled as

an all-pay investment: The investment cost is incurred regardless of whether the contestant wins

or not. For example, in the competitive bidding to host the Olympic games, candidate cities

spend money upfront, with the goal of bribing or otherwise persuading members of the Inter-

national Olympic Committee; in case a city is not awarded the Games, the money is forfeited.

Alternatively, we could think of each contestant’s effort as a winner-pay investment, meaning

that it is contingent on actually winning the contest. For example, a candidate city may commit

to build new stadia and other infrastructure and to invest in ambitious safety arrangements if

being awarded the Games; or the candidate city offers bribes that are contingent on winning.

In many situations, including the bidding for the Olympics, the contestants can arguably

make both all-pay and winner-pay investments. Moreover, the extent to which they choose to

use each one of these instruments to exert influence is likely to depend on the contest tech-

nology and the nature of the strategic environment in which the contestants interact. Other

examples include (i) the competition for a government contract or a grant and (ii) a politi-

cal election.3 In a contest for a government contract or a grant, the contestants can, on the one

hand, spend time and effort preparing their proposal and, on the other hand, commit to actions

to be taken if being awarded the contract/grant (like providing ambitious and costly customer

service). In a political contest, a candidate can increase her chances of being elected both by

making campaign expenditures and by making electoral promises (the latter is costly if the

promises deviate from the candidate’s ideal policy). While the campaign expenditures are paid

upfront, the cost of fulfilling campaign promises are incurred only if the candidate wins the

election.

In this paper, I develop a framework for hybrid contests where contestants can make both

all-pay and winner-pay investment. I then use this framework to study, both in symmetric and

asymmetric environments, the incentives of contestants to invest in each of the two influence

1This list is borrowed from Konrad (2009, p. 1).
2For surveys of this literature, see Nitzan (1994), Konrad (2009), and Corchón and Serena (2018). For a recent

survey of the experimental literature, including a useful introduction to some important modeling approaches, see
Dechenaux, Kovenock, and Sheremeta (2015).

3These example are discussed also by Melkonyan (2013).
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channels; how the contestants optimally mix between all-pay and winner-pay investments;

and how the equilibrium investment levels and the dissipation rate depend on the number of

contestants, the contest technology, and other aspects of the environment. Finally, I ask what

bias in the CSF should be chosen if the contestants have different valuations and the objective

is to maximize total equilibrium expenditures.

I set up the formal model in Section 2. In this model there are n contestants who, simul-

taneously with each other, commit to an all-pay investment level and a winner-pay invest-

ment level. These investments jointly generate each contestant’s score, according to a produc-

tion function. The scores of the n contestants then, through a CSF, determine each contestant’s

probability of winning. The economically important assumptions that I make about the score

production function is that it is homogeneous and strictly quasiconcave. The CSF is assumed

to be strictly concave in the own score (in the analysis in Sections 4 and 5, it is also assumed to

be homogeneous).

In Section 3, I first provide sufficient conditions for existence of a pure strategy equilibrium

of the hybrid contest (Proposition 1). These conditions require that that the returns to scale

associated with the score production function are not too strong. Moreover, for equilibrium

existence to be guaranteed, it helps if the elasticity of substitution between the two kinds of

investment is not too large; however, in an example with a constant elasticity of substitution

(CES), I show that an equilibrium exists also for arbitrarily large values of that elasticity, pro-

vided that winner-pay investments are sufficiently important in the score production function.

I further characterize the contestants’ equilibrium behavior (Proposition 2). In Section 4, I then

study a symmetric version of the model, where the CSF is assumed to be homogeneous. In spite

of the fact that both the CSF and the production function are general, the model gives rise to

a closed-form solution and this solution is quite simple (Proposition 3). The solution is stated

partly in terms of a function h, which is defined as the inverse of the marginal rate of technical

substitution between the two kinds of investment. In a symmetric equilibrium, the argument

of h is the number of contestants, n.

The comparative statics analysis for the symmetric model shows, among other things, that

if the score production function is such that it is relatively easy to substitute between the two

kinds of investment, then, as the number of contestants (n) increases, each contestant’s winner-

pay investment goes up and her all-pay investment goes down. The reason is that a larger n

implies a lower probability of winning, which effectively lowers the relative cost of winner-pay

investments. However, if it is sufficiently difficult to substitute between the two kinds of in-

vestment, then the winner-pay and the all-pay investment levels move in the same direction—

which direction depends on parameter values—as n goes up (Proposition 4). Section 4 also

studies the total amount of expenditures in the symmetric model. It turns out that, for any fi-

nite number of contestants, the hybrid contest always gives rise to a strictly smaller amount of

total expenditures than the corresponding all-pay contest (Proposition 5). The reason is that,

in a hybrid contest, winning the prize is worth less—namely, the gross valuation minus the

winner-pay investment. This creates a shift in a contestant’s best reply function: For any given

behavior of the rivals, she has an incentive to choose lower investment levels. This is true for

all contestants, and the result is an equilibrium with lower investment levels and expenditures.

The result that the hybrid contest yields a strictly smaller amount of total expenditures
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holds also for an infinitely large number of contestants, as long as the limit of nh(n) as n → ∞

is finite; if that limit is infinite, then the limit value of the total expenditures is the same in the

two models (Proposition 6). For a CES production function, the limit of nh(n) as n → ∞ is finite

if and only if σ ≥ 1, where σ is the elasticity of substitution. Intuitively, winner-pay investments

are less conducive to large expenditures than all-pay investments are; moreover, for σ ≥ 1 it is

relatively easy for the contestants to substitute away from all-pay investments to winner-pay

investments when the number of contestants goes up.

In Section 5, I study three asymmetric versions of the model, all with two contestants. I first

formulate a framework that encompasses all three models and prove a characterization result

as well as a sufficient condition for equilibrium uniqueness (Proposition 7). After that I turn

to the first one of the three more specific models: a contest in which the CSF is biased in favor

of one of the contestants. At an equilibrium of this contest, the contestant who wins with the

higher likelihood also (i) chooses a smaller winner-pay investment and (ii) contributes more

to the expected total amount of expenditures. Under the assumption that the asymmetry is

small, I show that the contestant who wins with the higher likelihood must be the one who is

favored by the CSF. What is the effect on the investment levels of an increase in the bias? There

are, depending on how easy it is to substitute, two possibilities. If the elasticity of substitution

is relatively high, then the favored contestant does less of winner-pay and more of all-pay

investment, while her rival does the opposite; but if the elasticity of substitution is low enough,

then the favored contestant does less of both kinds of investment and her rival does more of

both of them (Proposition 8).

In the second asymmetric contest the contestants are assumed to have different valuations

for winning the prize. Among the results is that (for a small asymmetry) the contestant with

the higher valuation wins with the highest likelihood. In contrast to the model with a biased

decision process, here the contestant who wins with the higher likelihood does not necessarily

choose a smaller amount of winner-pay investments—this happens only when it is sufficiently

easy to substitute (Proposition 9).

In the third asymmetric contest there is both a possible bias in the CSF and different valu-

ations. Moreover, the bias (if any) is assumed to be chosen by a principal who wants to max-

imize the expected total equilibrium expenditures. The final result of the paper states that the

optimal bias disfavors the high-valuation contestant but still makes her win with the highest

probability (Proposition 10). The reason why the high-valuation contestant is made to win with

the highest probability is that she is the more valuable contributor to the overall expenditures.

Thus, this contestant should be encouraged to use all-pay investments, as these are conducive

to high expenditures. This can be achieved by making her win probability high (for then all-pay

investments are relatively inexpensive).

1 Related Literature

Haan and Schoonbeek (2003) and Melkonyan (2013) study special cases of the present frame-

work. The former paper assumes a Cobb-Douglas production function (in addition, the expo-

nents in this function both equal unity) and a lottery CSF. It also derives results for an asym-
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metric contest where the contestants differ from each other with respect to their valuations.

Melkonyan assumes a CES production function, but with the restriction that the elasticity of

substitution cannot be below unity; his CSF is of the Tullock (1980) form. Moreover, he stud-

ies only a symmetric contest. The present analysis, in contrast, assumes a general production

function and a general CSF (the essential assumptions are, for the former, strict quasi-concavity

and homogeneity and, for the latter, strict concavity in the own score and homogeneity). In the

symmetric version of the model, these more general assumptions still allow for a closed-form

solution, which is quite simple. In addition, the general analysis is actually simpler and more

tractable than the analysis of the models using a specific functional form. The more general

analysis is possible thanks to an alternative methodology. Instead of plugging in the score pro-

duction function into the CSF and then take two first-order conditions for each contestant, the

idea is to derive a contestant’s best reply in two steps.4 First, I fix a contestant’s score and solve

for the optimal levels of all-pay and winner-pay investments that can produce that score. In

producer theory language, I compute two conditional factor demand functions by solving a

cost-minimization problem. Second, using the conditional factor demand functions I can easily

derive a contestant’s optimal score and thus also her best reply. One reason why this approach

is helpful is that, at the second step, each contestant has a single choice variable, which makes

it much easier to determine what conditions are required for equilibrium existence. Indeed, an

important contribution relative to Melkonyan’s (2013) analysis is to formulate a simple suffi-

cient condition for equilibrium existence, stated in terms of some key elasticities.5

Siegel (2010) formulates an interesting and quite general framework that accommodates

both all-pay and winner-pay (or, using his terminology, conditional and unconditional) invest-

ments. However, each contestant’s investment is one-dimensional. The single investment level

leads, according to an exogenous rule, to costs that are incurred partly conditional, partly un-

conditional, on winning. For example, in a special case of his model, a constant fraction of

the cost is paid only if winning and the remaining fraction is always paid. This model feature

means that there cannot be any substitution from, say, all-pay investments to winner-pay in-

vestments when the economic environment changes, which is an important aspect of the hybrid

contest. Another important model feature that distinguishes Siegel’s framework from the one

in the present paper is that, in his setting, a contestant who makes a strictly greater effort than

all her rivals always wins for sure, like in an all-pay auction: The CSF involves no uncertainty

(except possibly when there are ties).

Also related to the present analysis are papers that model contests with more than one in-

fluence channel (or multi-dimensional efforts), although not in the form of all-pay and winner-

4The first step of this approach has earlier been employed, in a contest model context, in an example discussed
by Kaplan and Wettstein (2006, p. 1352 and in particular fn. 1).

5To check the second-order conditions in Melkonyan’s framework, using his analytical approach, is cumbersome,
and when Melkonyan does it he partly relies on numerical simulations. To get a sense of how cumbersome it is,
consider the following passage from Melkonyan (2013, p. 976): “[. . . ] one can demonstrate, after a series of tedious
algebraic manipulations, that a player’s payoff function is locally concave at the symmetric equilibrium candidate
in (7) if and only if [large mathematical expression]. One can verify that the left-hand side of the above inequality
is neither positive for all parameter values nor negative. An examination of this expression also reveals that the
set of parameter values for which the determinant of the Hessian matrix is positive has a strictly positive measure.
Numerical simulations indicate that this inequality is violated only for ‘extreme values’ of the parameters [. . . ]. In
addition to verifying the local second-order conditions, I have used numerical simulations to verify that the global
second-order conditions are satisfied under a wide range of scenarios.”
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pay investments. These papers can be grouped into (at least) three categories. First, there is

a literature on sabotage in contests, where contestants exert effort both to improve the own

performance and to sabotage the rivals’ performances. See, e.g., Konrad (2000), who uses a Tul-

lock CSF, and Chen (2003), who uses a rank-order tournament à la Lazear and Rosen (1981).

Second, some works study contest models of war and conflict where the contestants allocate

their endowments between two activities: production and appropriation. Early contributions

to this strand of literature are Hirshleifer (1991) and Skaperdas and Syropoulos (1997). Third,

a number of papers extend the standard all-pay contest by allowing for two or more “arms”

of the influence activities, although all arms are of the all-pay nature. A recent example of this

is Arbatskaya and Mialon (2010), who assume that each contestant chooses a whole vector

of all-pay effort levels and that the linear effort costs may differ across arms and contestants.

The contestants’ effort levels jointly determine the win probabilities thorough a Tullock CSF

where the effects of the different arms are aggregated by a Cobb-Douglas function. Arbatskaya

and Mialon also, within their setting, provide an axiomatic justification for this Tullock-Cobb-

Douglas functional form. Other contributions within this third category include Clark and Kon-

rad (2007), who study a two-player Tullock contest with multi-dimensional efforts and where a

contestant must win in a certain number of these dimensions in order to be awarded the prize.6

A few papers have studied models in which the contestants can make only winner-pay in-

vestments. Yates (2011) formulates and solves a fairly general such model with two contestants.

He considers both a symmetric and an asymmetric setting and he also presents some results

for an example with private information about each contestant’s valuation. Wärneryd (2000)

models a court case in which two parties can either represent themselves or hire lawyers. In

the latter case, each contestant needs to pay a lawyer’s fee only if winning the case; this part

of the game is thus modeled as a winner-pay contest. The main point of Wärneryd’s paper is

that both parties prefer compulsory representation by lawyers, as this helps to reduce expen-

ditures. This finding is related to the result in the present paper that the hybrid contest (and

thus also a pure winner-pay contest) give rise to less total expenditures than the all-pay contest.

Matros and Armanios (2009) study an n-player all-pay Tullock contest with reimbursements.

That is, the authors assume that after a win or a loss, respectively, a certain exogenous fraction

of the expenditures that have been paid upfront are reimbursed to the contestant. For partic-

ular parameter values, this contest simplifies to a winner-pay contest (and for other particular

parameter values, it amounts to special case of Siegel (2010), discussed above).

There is also a related literature on multidimensional auctions (Che, 1993; Branco, 1997;

Asker and Cantillon, 2008). In the models in this literature, firms bid on both price and (possi-

bly many dimensions of) quality. Then the components of each bid jointly determine a score,

according to a previously announced scoring rule. The buyer chooses the bid with the highest

score (and, depending on the auction rules, the winning firm supplies either its own submitted

score or that of the second-highest scorer). In some of the papers, the scoring rule is endoge-

nous. Che (1993) studies an auction with a one-dimensional quality and a quasi-linear scoring

rule; Branco (1997) extends Che’s analysis to the case with correlated costs (but independent

signals); and Asker and Cantillon (2008) add, among other things, multidimensional private

6Another literature that can be said to belong to this third category is the one on conflicts with multiple “battle-
fields,” surveyed by Kovenock and Roberson (2012).
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information to Che’s analysis. Apart from the common feature of a score production function,

an interesting parallel with my analysis of the hybrid contest is that Che (1993) solves his model

using a two-step procedure: A supplier first determines the optimal quality-price mix for any

given score level, which reduces the two-dimensional problem to a single-dimensional one.

However, there are also important differences. For example, in the multidimensional auction,

the selection of a winner is made using the auction rule, as opposed to a probabilistic CSF.

Furthermore, in the hybrid contest, the two dimensions of the bid refer to an all-pay invest-

ment and a winner-pay investment. In the multidimensional auction, in contrast, all costs are

incurred and the price is paid conditional on winning, so only winner-pay investments are

possible.

Finally, there is an interesting paper by Che and Gale (2003) that studies the optimal design

of a research contest. In the contest that they study, a buyer wants to procure an innovation.

Each one of a number of firms can submit a bid that specifies both the quality of the firm’s

innovation and the prize it is awarded if it wins the contest. The winner is the firm whose bid

yields the highest net value (level of quality minus the required prize) for the buyer. Choosing

a strictly positive quality requires an ex ante investment. Hence, the firm’s investment cost

plays a similar role to the all-pay investment in the hybrid contest. In contrast, the prize that

the firm specifies is awarded only if the firm win’s the contest, which makes the negative of the

prize tantamount to the winner-pay investment in the hybrid contest. There are also, however,

several differences between the setups. The effective CSF in Che and Gale’s model is perfectly

discriminatory, which implies that the firms use mixed investment strategies in equilibrium.

Moreover, the effective score production function is linear and, as a consequence, substitution

between prize and quality does not play a role. More generally, Che and Gale use a mechanism-

design approach and derive the optimal mechanism in an environment in which prizes but not

investments are enforceable by courts.

2 A Model of a Hybrid Contest

Consider the following model of a hybrid contest, that is, a contest in which the outcome is

determined by both all-pay and winner-pay investments. There are n ≥ 2 economic agents,

or contestants, who try to win an indivisible prize. Contestant i’s valuation of the prize equals

vi > 0 and her probability of winning is determined by the contest success function (CSF)

pi (s) ∈ [0, 1] , with
n

∑
i=1

pi(0) ≤ 1 and
n

∑
i=1

pi(s) = 1 for all s 6= 0, (1)

where 0 is the n-dimensional zero vector, s = (s1, s2, . . . , sn), and si ≥ 0 is contestant i’s score.

The function pi is twice continuously differentiable for all s ∈ <n
+\ {0}.7 Moreover, it is strictly

increasing and strictly concave in si, and it is strictly decreasing in sj for all j 6= i. In addition, if

si = 0 and sj > 0 for some j 6= i, then pi (s) = 0. Any values of pi (0) that are consistent with

(1) are allowed, although it is assumed that pi (0) < 1 for all i.

7Note that the continuity assumption rules out a perfectly discriminatory CSF.
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Name f (x, y) h(m) σ(m) η(m)

Leontief min
{

x
α , y

β

}
n.a. 0 n.a.

Linear technology αx + βy n.a. ∞ n.a.
Cobb-Douglas xαyβ α

βm 1 α
α+β

CES
[
αx

σ−1
σ + (1 − α)y

σ−1
σ

] tσ
σ−1

[
α

(1−α)m

]σ
σ tασm1−σ

ασm1−σ+(1−α)σ

Table 1: Examples of production functions. More examples and relevant references can be

found in Nadiri (1982).

Contestant i’s score si is determined by the production function si = f (xi, yi). The variables

xi ≥ 0 and yi ≥ 0 are both chosen by contestant i. The first one, xi, is the all-pay investment;

this is the amount of money the contestant pays regardless of whether she wins the prize or

not. The second variable, yi, is the winner-pay investment: the amount contestant i pays if

and only if she wins the prize. The production function f (xi, yi) is strictly quasiconcave, three

times continuously differentiable, and strictly increasing in each of its arguments. Moreover,

the function satisfies f (0, 0) = 0 and the following Inada conditions:8 limxi→0 f1 (xi, yi) = ∞

for all yi > 0, and limyi→0 f2 (xi, yi) = ∞ for all xi > 0. Finally, it is homogeneous of degree

t > 0; formally, for all k > 0, f (kxi, kyi) = kt f (xi, yi). Some of these assumptions rule out

a linear production technology and a Leontief production technology. However, the analysis

below can deal with those technologies as limit cases.

The contestants are risk neutral, which means that contestant i maximizes the following

expected payoff:

πi = (vi − yi) pi (s) − xi, (2)

subject to si = f (xi, yi). The contestants choose their investments (xi, yi) simultaneously with

each other and they interact only once.

3 Existence and Characterization of Equilibrium

I will confine attention to pure strategy Nash equilibria of the game. In order to characterize

these equilibria, one possible approach would be to simply plug the constraint si = f (xi, yi)

into the payoff function (2) and then, for each contestant, derive one first-order conditions for

each of the two choice variables. However, that methodology makes it hard to determine under

what circumstances a pure strategy equilibrium exists (which is a real issue in this model). It

also makes the algebra cumbersome, which is a problem in itself and also makes it difficult to

detect the underlying economic logic of the model. I will instead use an alternative approach

that makes it easier to identify a sufficient condition for equilibrium existence. In addition, this

approach makes the analysis significantly more tractable, in spite of the fact that relatively little

structure is imposed on the model.

Contestant i’s best reply is defined, in the usual way, as her optimal choice of xi and yi,

8The subscript 1 (2, resp.) denotes the partial derivative of f with respect to the first (second, resp.) argument.
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given some particular actions of the other contestants, s−i = (s1, . . . , si−1, si+1, . . . , sn). The idea

behind the approach that I will employ is to derive contestant i’s best reply in two steps:

1. First I derive the optimal xi and yi, given some value of s (so, in particular, given the own

score si). In producer theory language, I compute the conditional factor demand functions

by solving a cost-minimization problem.

2. With the conditional factor demand functions at hand I can then, at the second step, char-

acterize contestant i’s optimal score si (given s−i), which in turn yields the optimal values

of xi and yi (given s−i).

One reason why this approach is helpful is that, at the second step, each contestant has a single

choice variable, which makes it much easier to determine what conditions are required for

equilibrium existence.

3.1 Step 1: The Cost-Minimization Problem

At step 1 the contestant treats the probability of winning, pi, as a parameter and chooses xi and

yi so as to minimize the expected costs piyi + xi, subject to the constraint f (xi, yi) = si.9 (Thanks

to the Inada conditions stated in the model description, the constraints xi ≥ 0 and yi ≥ 0 do

not bind and we can thus disregard them.) This is equivalent to a standard cost-minimization

problem for a price-taking firm, as studied in microeconomics textbooks (see, e.g., Mas-Colell et

al., 1995, Ch. 5), except that here the “prices” of input xi and yi equal unity and pi, respectively.

The problem is depicted in panel (a) of Figure 1.

The Lagrangian of the cost-minimization problem can be written as Li = piyi + xi −

λi[ f (xi, yi) − si], where λi is the shadow price associated with the constraint and where the

argument of pi has been suppressed. The necessary first-order conditions are:

∂Li

∂xi
= 1 − λi f1 (xi, yi) = 0,

∂Li

∂yi
= pi − λi f2 (xi, yi) = 0. (3)

These conditions are also sufficient for a solution to the cost-minimization problem, as the

production function is strictly quasiconcave.10 Hence the conditions in (3), together with the

constraint, define the optimal levels of xi and yi, conditional on si and pi. Denote these levels

by X (si, pi) and Y (si, pi), respectively.

It will be useful to derive more explicit expressions for X (si, pi) and Y (si, pi). To this end,

note that the first-order conditions in (3) can be combined to yield the following condition:

f1 (xi, yi)
f2 (xi, yi)

=
1
pi

. (4)

9The analysis here assumes that si > 0, which implies pi > 0. The case where si = 0 can be dealt with separately:
To achieve a zero score, it is optimal for the contestant to set xi = yi = 0. If sj > 0 for some j 6= i, then setting
xi = yi = 0 yields a zero payoff; if s−i = 0−i, then it yields the payoff pi (0) vi. This will be taken into account in
the proof of Proposition 2.

10In terms of Figure 1, panel (a), the set of values of xi and yi that satisfy f (xi, yi) ≥ si is strictly convex (by
the definition of strict quasiconcavity). This guarantees that the point of tangency between the isocost line and the
isoquant is unique.
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xi

yi

slope = − 1
pi

slope = −g
(

xi
yi

)

si = f (xi, yi)

X

Y

(a) Cost minimization.

xi
yi

m

g
(

xi
yi

)

45◦

(b) Graph of the g function.

m

xi
yi

h (m) 45◦

(c) Graph of the h function.

Figure 1: Panel (a) illustrates a contestant’s cost-minimization problem. The absolute value

of the isoquant’s slope, known as the marginal rate of technical substitution (MRTS), de-

pends only on the ratio xi/yi. The function g is defined as the value of the MRTS at xi/yi.

This function is graphed in panel (b), where a particular value of the MRTS is denoted by

m. The function h is the inverse of g and it is graphed in panel (c) as a function of m.

The left-hand side of (4) is the marginal rate of technical substitution (MRTS) between xi and yi,

and the right-hand side is the relative “price” of the two kinds of investment. It is well known

that, due to the assumption that f is homogeneous, the MRTS is determined by the ratio xi/yi,

meaning that we can write it as g (xi/yi).11 Moreover, the MRTS is a strictly decreasing function

of this ratio, g′ (xi/yi) < 0.12 We can thus write condition (4) as g (xi/yi) = 1/pi or

xi = yih

(
1
pi

)

, (5)

where h is the inverse of g (i.e., h
def= g−1). In words, the function h tells us which investment

ratio xi/yi that is consistent with a particular value of the MRTS. Since g is strictly decreasing,

so is h. The graphs of these two functions are plotted in panels (b) and (c) of Figure 1. The third

column of Table 1 indicates which h functions are associated with certain production functions.

We can now use (5) to eliminate xi from the constraint si = f (xi, yi).13 Thereafter, with the

help of the resulting expression and (5), we can solve for yi and xi. We then obtain:

Y (si, pi) =
[

si

f (h (1/pi) , 1)

] 1
t

, X (si, pi) = Y (si, pi) h

(
1
pi

)

. (6)

11Since the function f (xi, yi) is homogeneous of degree t, its partial derivatives are homogeneous of degree t − 1.
The MRTS can therefore be written as

f1 (xi, yi)
f2 (xi, yi)

=
k−(t−1) f1 (kxi, kyi)

k−(t−1) f2 (kxi, kyi)
=

f1

(
xi
yi

, 1
)

f2

(
xi
yi

, 1
) def= g

(
xi

yi

)

,

where the second equality is obtained by setting k = 1/yi.
12This follows from the strict quasiconcavity of f (xi, yi); cf. panel (a) of Figure 1.
13Doing that yields si = f [yih (1/pi) , yi] = yt

i f [h (1/pi) , 1], where the second equality uses the assumption that
f is homogeneous of degree t.
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Since the production function f (xi, yi) is assumed to be thrice differentiable, X (si, pi) and

Y (si, pi) are also differentiable in pi at least twice.

3.2 Step 2: Choosing the Optimal Score

At step 2 I let contestant i choose the optimal value of the score, acknowledging that here pi is

not a parameter but a function of the score. Contestant i’s payoff can be written as

πi (s) = pi (s) vi − C [si, pi (s)] , (7)

where pi (s) is given by (1) and where

C [si, pi (s)]
def= pi (s) Y [si, pi (s)] + X [si, pi (s)] (8)

is contestant i’s minimized expected costs, conditional on si (and s−i). A Nash equilibrium of

the hybrid contest can now be defined as a strategy profile s∗ such that πi (s∗) ≥ πi
(
si, s∗−i

)

for all si ≥ 0 and all contestants i. That is, given that all other contestants choose their scores

according to the equilibrium, each contestant i must, at least weakly, prefer her equilibrium

score to all other scores.

Before characterizing such an equilibrium, we should address the question of equilibrium

existence. It follows from a result due to Reny (1999) that a pure strategy equilibrium of the hy-

brid contest is guaranteed to exist if (i) each contestant i’s strategy set is closed and bounded,

(ii) her payoff function is quasiconcave in si, and (iii) the game is “better-reply secure.” Condi-

tion (i) can easily be taken care of by, without loss of generality, impose an upper bound on si

and condition (iii) holds under the assumptions we have already made (see the proof of Propo-

sition 1 for details). However, condition (ii) requires more structure on the model than we have

imposed so far. Assumption 1 below will specify a sufficient condition for (ii) to hold.

First, however, define the following elasticities:

η

(
1
pi

)
def=

f1

[
h
(

1
pi

)
, 1
]

h
(

1
pi

)

f
[

h
(

1
pi

)
, 1
] , σ

(
1
pi

)
def= −

h′
(

1
pi

)
1
pi

h
(

1
pi

) , ε i (s)
def=

∂pi

∂si

si

pi
.

In words, η
(

1
pi

)
is the elasticity of output with respect to xi. We have that η

(
1
pi

)
∈ (0, t).14

The second elasticity, σ
(

1
pi

)
> 0, is the elasticity of substitution. This is a measure of how

easy or difficult it is for a contestant to substitute one kind of investment for another, while

keeping the score variable si unchanged. For a Cobb-Douglas production function, σ
(

1
pi

)
= 1.

For a CES production function, the elasticity can take any positive value but is constant. Finally,

ε i (s) is the elasticity of the win probability with respect to si. Our assumptions that pi is strictly

increasing and strictly concave in si imply that ε i (s) ∈ (0, 1).

14By Euler’s homogeneous function theorem, x f1(x, y) + y f2(x, y) = t f (x, y). This implies that
x f1(x, y)/ f (x, y) < t.
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Assumption 1. The production function and the CSF satisfy at least one of the following three sets of

conditions:

(i) t ≤ 1 and ε i (s) η
(

1
pi

)
σ
(

1
pi

)
≤ 2 (for all i, pi, and s);

(ii) tr ≤ 1, rη
(

1
pi

)
σ
(

1
pi

)
≤ 2, and

pi(s) =
wisr

i

∑n
j=1 wjsr

j
(for all i, pi, and s 6= 0), (9)

where r > 0 and wi > 0 are parameters;

(iii) pi(s) is given by (9), f (xi, yi) = xα
i yβ

i (with α > 0 and β > 0), and αr ≤ 1 (for all i).

The condition t ≤ 1 in (i) says that the score production function exhibits constant or de-

creasing returns to scale. If indeed t ≤ 1, then the second condition in (i) is always satisfied for

a Cobb-Douglas production function (since then σ = 1). With a CES production function (still

assuming t ≤ 1), the assumption is guaranteed to hold for all σ ∈ (0, 2]. The set of conditions

(ii) relaxes the requirement that f (xi, yi) exhibits non-increasing returns to scale; instead it re-

quires that pi(s) is of a generalized Tullock form with scale parameter r and that tr ≤ 1. The

set of conditions (iii) requires both a generalized Tullock form for the CSF and a Cobb-Douglas

production function, but instead replaces condition tr ≤ 1 with αr ≤ 1 (meaning that β can be

arbitrarily large). This alternative condition holds, for example, in the Cobb-Douglas-Tullock

setting with r = α = β = 1 that is assumed by Haan and Schoonbeek (2003).15

Proposition 1. (Equilibrium existence) Suppose Assumption 1 is satisfied. Then there exists a pure

strategy Nash equilibrium of the hybrid contest.

Proposition 1 represents a significant step forward relative to the analysis in Melkonyan

(2013). The condition that is required by the proposition (i.e., Assumption 1) can be satisfied

also for arbitrarily large values of the elasticity of substitution as long as, in the production

function, the winner-pay investments matter sufficiently much relative to the all-pay invest-

ments. This is illustrated in Figure 2, which assumes a CES production technology, constant

returns to scale (t = 1), and a CSF given by (9). Given CES, the relative importance of all-pay

investments in the production function can be measured by a parameter α (see the functional

form in Table 1). Figure 2 shows that, if α is small enough (α . 0.465) and if r ≤ 1, then As-

sumption 1 holds for any σ > 0. The figure also shows that, in general, it would be misleading

to say that σ must be sufficiently small for Assumption 1 to be satisfied—for certain α’s the

assumption is violated for intermediate values of σ but satisfied for sufficiently small and large

values of this elasticity.16

15The proofs of Proposition 1 and other results that are not shown in the main text can be found in the appendix.
The calculations used for some of the figures are reported in the online appendix (Lagerlöf, 2020).

16The reason why Assumption 1 can hold also for large values of σ is that the elasticity η
(

1
pi

)
is a function of

σ and it will, under certain conditions, be small when σ is large. In particular, for α < 1/2 and σ > 1, the upper

bound of η
(

1
pi

)
equals η (1) =

(
α

1−α

)σ
/
[(

α
1−α

)σ
+ 1
]
, which is decreasing in σ. For further details, see the online

appendix (Lagerlöf, 2020).
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r
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r
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1
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α∗

3
4

1

Θ(σ, r) def= ( 2
rσ−2 )

1
σ

1+( 2
rσ−2 )

1
σ

Assumption 1 satisfied

r σ∗ α∗ r σ∗ α∗

.1 91.8 .497 .6 15.3 .479

.2 45.9 .493 .7 13.1 .476

.3 30.6 .490 .8 11.5 .472

.4 23.0 .486 .9 10.2 .469

.5 18.4 .483 1 9.2 .465

Figure 2: Illustration of Proposition 1. Given a CES production function and a CSF that sat-

isfies (9), with t = 1 and r ≤ 1, Assumption 1 is always satisfied if σ ≤ 2/r; and otherwise

it is satisfied if α ≤ Θ(σ, r). The function Θ(σ, r) is minimized with respect to σ at σ = σ∗,

where it takes the value α∗.

Now turn to the characterization of equilibrium. The first-order condition associated with

the problem of maximizing (7) with respect to si can be written as

∂πi (s)
∂si

=
∂pi (s)

∂si
vi − C1 (si, pi) − C2 (si, pi)

∂pi (s)
∂si

≤ 0,

with an equality if si > 0. This inequality can be reformulated by using Shephard’s lemma,

C2 (si, pi) = Y [si, pi (s)].17 We thus obtain the following first-order condition for contestant i:

[vi − Y (si, pi (s))]
∂pi (s)

∂si
≤ C1 (si, pi) , (10)

with an equality if si > 0. Condition (10) states that, at the optimum, the marginal benefit of a

larger si must not exceed the marginal cost of a larger si, where the marginal benefit equals the

net value of winning (vi − Y [si, pi (s)]) multiplied by the increase in probability of winning.

Proposition 2. (Characterization of equilibrium) Suppose Assumption 1 is satisfied. Then s∗ =

(s∗1, . . . , s∗n) is a pure strategy Nash equilibrium of the hybrid contest if and only if condition (10) holds,

with equality if s∗i > 0, for each contestant i. Moreover, s = 0 is not a Nash equilibrium.

Once the equilibrium scores have been pinned down by the first-order conditions (10), we

can use (1) to determine each contestant’s probability of winning and (6) to obtain the invest-

ment levels.
17This result holds because the effect of a change in pi on C [si, pi (s)] that goes through X (si, pi) and Y (si, pi)

must equal zero, as xi and yi have been chosen optimally at step 1 (this is simply an application of the envelope
theorem). For a discussion of Shephard’s lemma see, for example, Chambers (1988, p. 56 onwards).
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4 A Symmetric Hybrid Contest

In this section, I derive results for a symmetric hybrid contest: All contestants are ex ante iden-

tical (so vi = v) and the CSF is symmetric. In addition, I assume that the CSF is homogeneous.

Assumption 2. (Symmetry) For all j 6= i and all a, b ∈ <+, pi(s) |(si ,sj)=(a,b)= pj(s) |(si ,sj)=(b,a).

Assumption 3. (Homogeneity of degree t̃) For all i and for all k > 0, pi(ks) = kt̃ pi(s).

By combining Assumption 3 and our previous assumption that ∑n
i=1 pi(s) = 1, one can

easily show that the CSF function is indeed homogeneous of degree zero ( t̃ = 0), which means

that it is scale invariant. This, in turn, implies that the partial derivative of pi(s) with respect to

si is homogeneous of degree −1. Now note that, by using the latter result and by evaluating at

symmetry, we can write the derivative of the CSF with respect to the own score as

∂pi(s, s, . . . , s)
∂si

=
ε̂(n)
ns

, where ε̂(n) def= ε i (1, 1, . . . , 1) .

Thus, by imposing symmetry on the first-order condition (10), which here must hold with

equality, and by using the expressions in (6) and (8), we have

(v − y∗)
ε̂(n)
ns∗

= C1

[

s∗,
1
n

]

⇔ (v − y∗) tε̂(n) = y∗ + nx∗, (11)

where x∗
def= X

(
s∗, 1

n

)
and y∗

def= Y
(
s∗, 1

n

)
.18 The second equality in (11) is linear in x∗ and y∗,

and it is now straightforward to solve for these variables and for s∗.

Proposition 3. (Equilibrium, symmetric model) Suppose Assumptions 1-3 are satisfied and that

vi = v for all i. Then, within the family of symmetric equilibria, there is a unique pure strategy Nash

equilibrium of the hybrid contest. In this equilibrium, s∗ = f [h(n), 1] (y∗)t, x∗ = h(n)y∗, and

y∗ =
tε̂(n)v

1 + nh(n) + tε̂(n)
. (12)

The results in Proposition 3 are a substantial generalization of those in Haan and Schoonbeek

(2003) and Melkonyan (2013).19 The present results hold for any f and pi functions that are

consistent with Assumptions 1-3 and with the model assumptions made in Section 2 (most

importantly, that the production function is strictly quasiconcave and homogeneous and that

the CSF is strictly concave in the own score). From the results in Proposition 3 we can also, as

limit cases, obtain expressions for the equilibrium expenditures in a pure winner-pay contest

and a pure all-pay contest. The former is given by limh→0 y∗ = tε̂(n)v/ [1 + tε̂(n)] and the latter

18The last step in (11) uses C1

[
s∗, 1

n

]
= 1

ts∗ C
[
s∗, 1

n

]
= 1

ts∗

(
y∗

n + x∗
)

.
19Proposition 3 does not rule out the possibility that there exist asymmetric equilibria in the symmetric model, in

addition to the unique symmetric equilibrium described in the proposition. However, by imposing more structure
on the model, it is possible to exclude this possibility. In particular, the uniqueness result in Proposition 7 is valid
also here, under the additional assumption made there that there are two contestants. This results states that a

sufficient condition for equilibrium uniqueness is that rη
(

1
pi

)
σ
(

1
pi

)
≤ 1 (for all pi ∈ [0, 1]). That is, one of the

conditions in part (i) of Assumption 1 is strengthened somewhat.
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equals limh→∞ x∗ = tε̂(n)v/n. To the best of my knowledge, these closed-form expressions for

the equilibrium investments of the symmetric pure all-pay and winner-pay contests are more

general than any ones in the previous literature.

Let us now turn to comparative statics. Some of the results reported below require the fol-

lowing additional assumption:

Assumption 4. (Independence of irrelevant alternatives) For all i 6= j and for all s with si > 0, the

CSF has the following property:

pi
(
s1, . . . , sj−1, 0, sj+1, . . . , sn

)
=

pi(s)
1 − pj(s)

. (13)

Assumption 4 says that contestant i’s probability of winning when contestant j does not

participate is the same as when j indeed participates but is known not to have won.20 The as-

sumption is always satisfied for n = 2. Skaperdas (1996) and Clark and Riis (1998) have shown

that Assumptions 2-4 (together with the assumptions about pi made in the model description)

imply that the CSF is of the Tullock form: pi(s) = sr
i / ∑n

j=1 sr
j , for r > 0. This in turn means that,

under those assumptions, we have

ε̂(n) =
r(n − 1)

n
. (14)

In accordance with the notation used in Table 1, let α be a parameter in the production func-

tion that increases the relative importance of all-pay investments. In particular, a larger α is

associated with a flatter MRTS and thus a larger value of h:

∂h(n)
∂α

> 0. (15)

Proposition 4. (Comparative statics, investment levels) Suppose Assumptions 1-3 are satisfied.

Then both x∗ and y∗ are strictly increasing in v and t. Moreover, x∗ is strictly increasing and y∗ is

strictly decreasing in α. Suppose in addition that Assumption 4 is satisfied. Then the effects of a larger

number of contestants on x∗ and y∗ are as follows:

∂x∗

∂n
< 0 ⇔ σ(n) > −

n (n − 2) h (n) − 1

(n − 1)
[
1 + rt(n−1)

n

] ,
∂y∗

∂n
> 0 ⇔ σ(n) >

n(n − 2)h(n) − 1
(n − 1)nh(n)

; (16)

and if σ(n) ≥ 1, then necessarily ∂x∗
∂n < 0 and ∂y∗

∂n > 0.

The comparative statics results with respect to v and α are straightforward. Similarly, the

result about t can easily be understood in light of the fact that this is a returns-to-scale param-

eter. To understand the comparative statics results with respect to n, note that a larger number

of contestants in a symmetric equilibrium means a lower probability of winning for any one

of them. This lowers the relative cost of investing in yi. As a consequence, whenever it is suf-

ficiently easy to substitute between xi and yi, we have ∂x∗
∂n < 0 and ∂y∗

∂n > 0. However, if the

20Interpreting sj = 0 as “not participating” is natural, given the assumption in the model description that sj = 0
and si > 0 imply pj (s) = 0.
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Figure 3: Illustration of Propositions 4 and 5. Assuming a CES production function and a

Tullock CSF, with t = r = v = 1, panels (a) and (b) plot y∗ and x∗ against n for the follow-

ing parameter configurations: (σ, α) = (1, 1
2 )—the blue, dotted curve; (σ, α) = ( 1

2 , 1
2 )—the

red, dashed curve; (σ, α) = (0, 7
10 )—the brown, solid curve; and (σ, α) = (0, 1

10 )—the black,

loosely dashed curve. Under the same assumptions, panel (c) plots RH against n for the fol-

lowing parameter configurations: (σ, α) = (1, 1
2 )—the blue, dotted curve; (σ, α) = ( 1

2 , 1
2 )—

the red, dashed curve; (σ, α) = (2, 9
10 )—the green, solid curve; and (σ, α) = (2, 1

2 )—the

orange, loosely dashed curve.

elasticity of substitution σ(n) is relatively small, then we can have other results. This is easy to

see from the relationship
∂y∗

∂n
n
y∗

= σ(n) +
∂x∗

∂n
n
x∗

, (17)

which follows immediately from x∗ = h(n)y∗. In the limit where σ(n) → 0, it is clear from (17)

that ∂x∗
∂n and ∂y∗

∂n must have the same sign. The reason is obvious. As σ(n) → 0, the score pro-

duction function requires xi and yi to be used in fixed proportions (a Leontief production tech-

nology). It turns out that, by choosing the parameters appropriately, we can make either both

derivatives positive (if f is winner-pay intensive) or both negative (if f is all-pay intensive)—at

least locally.21 Panels (a) and (b) of Figure 3 illustrate this.

The total amount of equilibrium expenditures in the symmetric hybrid model is defined

as RH def= nC
[
s∗, 1

n

]
. It is interesting to compare the magnitude of RH to the total equilibrium

expenditures in the corresponding pure all-pay contest, which will be denoted by RA. The

latter can be obtained from the current framework by, for example, assuming a Cobb-Douglas

production function, so that f (xi, yi) = xα
i yt−α

i , and then consider the limit α → t. Doing that

21It may be surprising that both derivatives can be positive. The reason is that, in a pure winner-pay contest, an
individual contestant’s investment can be increasing in n, as these investments are paid only by the winner and
thus the aggregate investments of that contest correspond, in a way, to the individual investments of the pure all-
pay contest. (With a lottery function, the individual equilibrium investments in the pure winner-pay contest equal
y∗ = (n − 1)v/(2n − 1), which indeed are increasing in n.) For a low enough value of α, the hybrid contest is
sufficiently close to the pure winner-pay contest that it exhibits the same feature.
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yields

RA = tε̂(n)v. (18)

Proposition 5. (Total expenditures) Suppose Assumptions 1-3 are satisfied. In the symmetric hybrid

contest, the total amount of equilibrium expenditures can be written as:

RH =
[

1 −
y∗

v

]

RA =
[

1
v [1 + nh(n)]

+
1

RA

]−1

. (19)

These expenditures are strictly lower than the total equilibrium expenditures in the corresponding pure

all-pay contest, RH < RA. Moreover, RH is strictly increasing in v, t, and α. Suppose in addition that

Assumption 4 is satisfied. Then RH is weakly increasing in n if and only if: (i)

σ (n) ≤ 1 +
4n

rt (n − 1)2 ; (20)

or (ii) inequality (20) is violated and h (n) /∈ (ΞL, ΞH), where

ΞL
def
=

K
2
−

1
2n

√
n2K2 − 4, ΞH

def
=

K
2

+
1

2n

√
n2K2 − 4, with K

def
=

rt (n − 1)2 [σ (n) − 1] − 2n
n2 .

A striking result reported in Proposition 5 is that, for all parameter values, the hybrid con-

test yields lower total expenditures than the pure all-pay contest (i.e., RH < RA). We can under-

stand this result by noting that the effective prize that a contestant can win in a hybrid contest

is not v (as it is in the pure all-pay contest) but v − yi. All else equal, this lowers the contestant’s

incentive to invest in xi and yi and she will thus be content with a lower value of the score si.

In other words, the contestant’s best reply, as implicitly defined by the first-order condition in

(10), will shift downwards. As this is true for all contestants, the result is an equilibrium with

lower investment levels and expenditures.22

Proposition 5 also reports several comparative statics results. As was the case for Propo-

sition 4, the results about v and t are straightforward. The reason why ∂RH/∂α > 0 is that a

larger α makes the hybrid model closer to the pure all-pay contest and this contest is conducive

to large expenditures. What about the comparative statics with respect to n? In the pure all-pay

contest and under Assumption 4, the total expenditures are increasing in this parameter (see

eqs. (14) and (18)). A sufficient condition for the same result to hold in the hybrid model is that

condition (20) is satisfied, which requires a small enough elasticity of substitution. However, if

(20) is violated and if h(n) is neither too large nor too small, then RH can be decreasing in n. The

reason is that a larger n makes winner-pay investments less costly in relative terms; this leads

to substitution from all-pay to winner-pay investments and thus a larger y∗, which lowers the

effective value of the prize. The lower value of the prize, in turn, leads to lower total expendi-

tures. The result that RH can be decreasing in n, which was also shown by Melkonyan (2013),23

22Within a simpler framework, Wärneryd (2000, p. 152) shows in greater detail and with the help of a figure how
the best reply shifts downwards in a winner-pay environment relative to an all-pay setting. The interested reader is
encouraged to consult Wärneryd’s useful discussion.

23A similar result, called the exclusion principle, has been obtained by Baye, Kovenock and De Vries (1993). How-
ever, these authors consider another setting (an all-pay auction) and their result is driven by a different logic (which
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Figure 4: In the symmetric model, total expenditures can be decreasing in n. The graphs

assume a CES production function and t = r = 1.

is illustrated in panel (c) of Figure 3. Moreover, for an example with a CES production func-

tion, r = t = 1, and n = 10, Figure 4 indicates where in the (α, σ)-space that this phenomenon

occurs. This figure also confirms that the phenomenon can indeed occur for parameter values

for which Assumption 1 is satisfied.

Finally consider the question how the total expenditures, under Assumption 4, evolve as the

number of contestants becomes very large. As a benchmark, first note that the limit value of the

expenditures in the pure all-pay contest (i.e., limn→∞ RA) equals trv; this follows immediately

from (14) and (18). Next, from the right-most expression in (19) we see that the way in which

the corresponding limit value in the hybrid contest relates to trv depends on the limit value

of nh(n). This, in turn, depends on whether h(n) decreases slower or faster than n increases.

Proposition 6 summarizes these results.

Proposition 6. (Limit, total expenditures) Suppose Assumptions 1-4 are satisfied. As n → ∞, the

total amount of expenditures in the symmetric hybrid contest can be written as:

lim
n→∞

RH =






trv(1+L)
trv+1+L if limn→∞ nh(n)

def
= L ∈ [0, ∞)

trv if L = ∞.
(21)

For a CES production function, we have nh(n) =
(

α
1−α

)σ
n1−σ. This means that, for such a

technology, the limit total expenditures equal the ones in the all-pay contest if and only if σ < 1;

for σ ≥ 1, they are strictly lower than the limit total expenditures in the all-pay contest.

involves asymmetry in the contestants’ valuations). For further work related to the exclusion principle, see Che and
Gale (2000) and Alcalde and Dahm (2010), who study non-deterministic CSFs, and Kirkegaard (2013) who studies
a deterministic CSF with incomplete information.
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5 Asymmetric Hybrid Contests

In this section, I derive results for three asymmetric hybrid contests. In the first model I allow

for the possibility that the decision process (i.e., the CSF) is biased in favor of one of the contes-

tants. In the second model I instead let the contestants have different valuations for winning.

In the third one I allow for both these kinds of asymmetry, but I let the degree of bias in the CSF

be endogenous. Throughout I assume that there are two contestants (n = 2) and that Assump-

tions 1 and 3 hold. In addition, and as already noted, Assumption 4 is automatically satisfied

when there are only two contestants. Clark and Riis (1998) have shown that Assumptions 3 and

4 (together with the assumptions about pi made in the model description) imply the following

extended Tullock form of the CSF:

pi(s) =
wisr

i

w1sr
1 + w2sr

2
, w1, w2 > 0. (22)

This functional form implies that the derivative of the win probability with respect to the own

score becomes ∂pi/∂si = rpi(1 − pi)/si. By using this expression and the relationships in (6)

and (8), we can write the first-order conditions in (10) as24

y∗i =
rtp∗i (1 − p∗i )vi

rtp∗i (1 − p∗i ) + p∗i + h
(

1
p∗i

) , for i = 1, 2. (23)

By plugging the equilibrium scores s∗1 and s∗2 into (22), we also obtain the relationship p∗1w2 (s∗2)
r =

(1 − p∗1)w1 (s∗1)
r, which can be restated as Υ(p∗1) = 0, where

Υ(p1)
def=

w2vrt
2

w1vrt
1

p1 f
[

h
(

1
1−p1

)
, 1
]r

[
rtp1(1 − p1) + 1 − p1 + h

(
1

1−p1

)]rt −
(1 − p1) f

[
h
(

1
p1

)
, 1
]r

[
rtp1(1 − p1) + p1 + h

(
1
p1

)]rt .

We thus obtain the following result.

Proposition 7. (Characterization and uniqueness of equilibrium) Suppose Assumptions 1 and 3

are satisfied. Moreover, suppose n = 2 and that the two contestants are ex ante identical in all respects

except that, possibly, w1 6= w2 and v1 6= v2. Then the equilibrium values of p∗
1 , y∗1 and y∗2 are determined

by the three equations (23) and Υ(p∗1) = 0. The all-pay equilibrium investment levels are obtained from

the relationships x∗
1 = y∗1h( 1

p∗1
) and x∗2 = y∗2h( 1

1−p∗1
). The equilibrium is guaranteed to be unique if, for

all pi ∈ [0, 1], rη
(

1
pi

)
σ
(

1
pi

)
≤ 1.

The condition for uniqueness stated in Proposition 7 is not implied by Assumption 1. Hence,

in general we cannot rule out multiplicity of equilibria. The comparative statics analysis pre-

sented below will consider an equilibrium in which Υ′(p∗1) > 0 (a stability property). Such an

equilibrium always exists under Assumption 1. Thus, if the model has a unique equilibrium,

then this indeed satisfies Υ′(p∗1) > 0.

24Given that there are only two contestants, both of them must be active in an equilibrium.
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5.1 A Biased Decision Process

Suppose v1 = v2 but that we may have w1 6= w2. That is, the contestants have the same valua-

tions but the decision process may be biased in favor of contestant 1 (if w1 > w2) or contestant

2 (if w2 > w1).

Proposition 8. (Biased decision process) Suppose Assumptions 1 and 3 are satisfied. Moreover, sup-

pose n = 2 and that the two contestants are ex ante identical in all respects except that, possibly,

w1 6= w2. Then:

(i) p∗1 > p∗2 ⇔ y∗1 < y∗2 ⇔ C(s∗1, p∗1) > C(s∗2, p∗2).

(ii) Suppose in addition that Υ′(p∗1) > 0. Evaluated at symmetry, contestant 1’s equilibrium win

probability is strictly increasing in w1 and the equilibrium winner-pay investments of contestant

1 (2, resp.) are strictly decreasing (strictly increasing, resp.) in w1. Moreover,

∂x∗1
∂w1

|w1=w2> 0 ⇔
∂x∗2
∂w1

|w1=w2< 0 ⇔ σ(2) >
2

2 + rt
.

Part (i) of Proposition 8 says that the contestant who is more likely to win invests less in

yi than her rival does; the reason is that the higher win probability makes the relative cost of

winner-pay investments higher, so the contestant does less of it. Part (i) also reports that the

expected expenditures of the contestant with the higher win probability are higher than her

rival’s.

Part (ii) concerns the effect of a small change in w1 on the win probability and on the winner-

pay and all-pay investments. To simplify the algebra, the analysis is restricted to the case where

the difference between w1 and w2 is small. The results say that, evaluated at symmetry, contes-

tant 1’s win probability is increasing in w1, which is probably not very surprising. Similarly,

evaluated at symmetry, the winner-pay investments of contestant 1 (2, resp.) go down (up,

resp.) as w1 increases. The reason is that, for contestant 1, winner-pay investments become

more expensive due to the higher win probability (and vice versa for contestant 2). Moreover,

again evaluated at symmetry, the all-pay investments of contestant 1 (2, resp.) are increasing

(decreasing, resp.) in w1 if and only if the elasticity of substitution is larger than a particular

threshold, which is smaller than unity. That is, if the elasticity of substitution is equal to at

least one, then the all-pay investments move in opposite direction to the winner-pay invest-

ments. This is simply because, again, each contestant substitutes from one influence channel

to another, when their relative costs change. However, for low enough values of the elasticity

of substitution, the two investment levels move in the same direction when w1 goes up. For

the favored contestant, both decrease; and for her rival, both increase. This may suggest that,

for such low values of the elasticity of substitution, the favored contestant’s expenditures are

lower than those for the rival. Yet the result in part (i) says that this is not the case: The favored

contestant’s expenditures are always higher than her rival’s. Apparently, although both x∗i and

y∗i are lower for the favored contestant, her probability of winning is sufficiently much higher

to ensure that the result holds.
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5.2 Different Valuations

Now suppose that w1 = w2 but that we may have v1 6= v2. That is, the decision process is

unbiased but the contestants may have different valuations. We have the following result.

Proposition 9. (Different valuations) Suppose Assumptions 1 and 3 are satisfied. Moreover, suppose

n = 2 and that the two contestants are ex ante identical in all respects except that, possibly, v1 6= v2.

Then:

(i) p∗1 > p∗2 ⇔ y∗1
v1

<
y∗2
v2

;

(ii) v1 − y∗1 > v2 − y∗2 ⇔ C(s∗1, p∗1) > C(s∗2, p∗2).

Part (i) of Proposition 9 states that a larger win probability is associated with a lower ratio

between winner-pay investment and valuation (y∗i /vi). This differs somewhat from the result in

part (i) of Proposition 8. When vi may vary, as here, it is not necessarily true that the contestant

with the higher win probability chooses less winner-pay investments, since this contestant may

also have a higher valuation. Part (ii) provides a condition for contestant 1 to contribute more to

the expected total expenditures than contestant 2, namely, that the ex post net value of winning

(vi − y∗i ) is larger for contestant 1.

5.3 Different Valuations and Endogenous Decision Process

Suppose, finally, that contestant 1 may have a higher valuation than contestant 2 (v1 ≥ v2) and

that the relationship between w1 and w2 is endogenous. In particular, for any given values of

v1, v2, and w2, a principal can freely choose w1 and thus determine the magnitude of the bias

in the CSF. The principal’s objective is to maximize the expected total amount of equilibrium

expenditures. The timing is as follows. First the principal chooses w1 ≥ 0; then this choice is ob-

served by the two contestants and, exactly as in the previous subsections, they simultaneously

make their all-pay and winner-pay investments. Let ŵ1 denote the value of w1 at a (subgame

perfect Nash) equilibrium of the above game. Also, let p̂1 denote the equilibrium value of p1.

What can we say about ŵ1 and p̂1? I will explore this question under the following assumption:

Assumption 5. The production function is of Cobb-Douglas form: f (xi, yi) = xα
i yβ

i , for α > 0 and

β > 0.

Under Assumption 5, and for a given p1, the expected total amount of expenditures can be

written as

RH = rtp1 (1 − p1)
rβ [p1v1 + (1 − p1) v2] + v1 + v2

[rβ (1 − p1) + 1] (rβp1 + 1)
(24)

(for a derivation, see the proof of Proposition 10). Moreover, an equilibrium value of p1 satisfies

the following equality, which is a special case of Υ (p1) = 0:

w1 = w2

(
p1

1 − p1

)1+rβ ( rβ (1 − p1) + 1
rβp1 + 1

v2

v1

)rt

. (25)
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Note that (24) does not depend on w1 directly, only through p1. Thus, ŵ1 can be determined

recursively. We first find p̂1 (by maximizing (24) with respect to p1) and then plug p1 = p̂1 into

(25) to obtain ŵ1.

Proposition 10. (Optimal bias) Suppose that Assumptions 1, 3, and 5 are satisfied, that n = 2, and

that the two contestants are ex ante identical in all respects except that, possibly, w1 6= w2 and v1 ≥ v2.

Also suppose that w1 is chosen at an ex ante stage so as to maximize the expected total expenditures.

Then the equilibrium values of p1 and w1 satisfy: p̂1 = 1
2 and ŵ1 = w2 if v1 = v2; and p̂1 > 1

2 if

v1 > v2. Moreover, ∂ p̂1
∂v1

> 0 and ∂ p̂1
∂v2

< 0 for all v1 ≥ v2, and ∂ p̂1
∂(rβ) > 0 for all v1 > v2. Finally,

lim
v1→∞

p̂1 < 1, lim
v1→∞

ŵ1 = 0, lim
v1→v2

∂ŵ1

∂v1
< 0.

Proposition 10 says that if v1 = v2, so that there is no exogenous asymmetry, then the

expected total expenditures are maximized by making the CSF unbiased, which also means

p̂1 = 1
2 . The proposition also says that if v1 > v2, then the expected total expenditures are maxi-

mized by choosing a w1 that makes contestant 1 more likely to win than contestant 2. However,

this does not necessarily mean that the bias is in favor of contestant 1, as this contestant also has

a higher valuation. On the contrary, for a small difference between v1 and v2, the endogenously

chosen bias is necessarily in favor of contestant 2. Likewise, if the difference between the valu-

ations is very large (so v1 → ∞, while v2 is fixed), then again the bias is in favor of contestant 2.

Deriving analytical results for the case where the difference (v1 − v2) is neither infinitesimally

small nor infinitely large is challenging; however, Figure 5 shows some numerical examples

where the optimally chosen bias is in favor of contestant 2 for all v1 > v2.

Intuitively, the result that p̂1 > 1
2 whenever v1 > v2 is straightforward to understand. The

high-valuation contestant is a more valuable contributor to the expected total expenditures.

Therefore, since all-pay investments are more conducive to a high expenditure level, the rela-

tive price of all-pay investments should be made lower for contestant 1 than for contestant 2.

Hence p̂1 > 1
2 . In order to create the outcome p̂1 > 1

2 , the principal is helped by the fact that,

exogenously, v1 > v2. This turns out to be more than enough to create the desired difference in

win probability—there is no need to, in addition, bias the CSF in favor of contestant 1. Indeed,

the effect arising from v1 > v2 must be alleviated by setting ŵ1 < w2, i.e., to create a bias against

the high-valuation contestant. Intuitively, the result that ŵ1 < w2 does not seem obvious, which

raises some questions about its robustness. To explore this further would be interesting but is

beyond the scope of the present paper.

6 Concluding Remarks

In this paper, I have used a producer theory approach to study contests where the contestants

can make both all-pay and winner-pay investments—so-called hybrid contests. This approach

allowed for a general analysis that still is very tractable, in particular for the symmetric case.

Pure all-pay and winner-pay contests are obtained as limit cases of this setting, where the for-

mer limit case is similar to a standard Tullock (1980) contest but more general. Under symmetry,
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v1

p̂1

0
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.50

.55

(a) The high-valuation contestant’s

probability of winning.

v1

ŵ1

0 1 2 3 4 5 6 7 8 9 10
0

.25

.50

.75

1

(b) The weight in the CSF that is assigned to the

high-valuation contestant’s score.

Figure 5: The model with different valuations and endogenous decision process. Both pan-

els assume t = r = v2 = 1 (also recall that β = t − α). They plot p̂1 and ŵ1, respectively,

against v1 for three different values of α: 0.9 (the blue, dotted curve), 0.5 (the green, dashed

curve), and 0.1 (the red, solid curve).

the analysis yields a simple closed-form solution, in spite of the general setting.25

Thanks to the producer theory approach, I could derive a sufficient condition for equilib-

rium existence—stated in terms of basic elasticities of the model—that implies that there can

be an equilibrium also for arbitrarily large values of the elasticity of substitution. The hybrid

contest always gives rise to a smaller amount of expected total expenditures than the corre-

sponding pure all-pay contest. This fact and the contestants’ opportunity to substitute were

important for some of the comparative statics results. In particular, the results about the re-

lationship between total expenditures and n in Proposition 5 and the optimal-bias result in

Proposition 10 are driven by a contestant’s incentive to substitute from winner-pay to all-pay

investments as the economic environment changes, in conjunction with the fact that all-pay

investments are more conducive to large expenditures.

It would be interesting to apply the producer theory approach to other models of contests

where the contestants have access to multiple influence channels or where they can choose

multi-dimensional efforts (see the literature review in the Introduction). However, in other

applications a rival’s individual effort levels may possibly matter directly for a contestant’s

payoff—not only through an aggregator variable like the score in the hybrid model studied

here. If so, the approach might not be as helpful as it has been in the present paper.

The analysis in the present paper has given rise to a large number of predictions, which

would be desirable to test with the help of experimental or field data. The setting used here

should be particularly useful as a basis for such empirical studies, as it is quite general and the

25Indeed, also the closed-form solutions for the all-pay and winner-pay limit cases are, to the best of my knowl-
edge, more general than any ones in the previous literature.
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analysis has spelled out comparative statics results under a very broad set of circumstances.

Yet there are several directions in which the current setting, in future theoretical work, could

be extended. Examples of extensions that seem promising and interesting include multi-period

settings and/or sequential moves, asymmetric hybrid contests with more than two contestants,

and to study contest design questions in broader settings than considered here.

Appendix

Proof of Proposition 1

To prove the proposition, we can invoke Theorem 3.1 in Reny (1999), which guarantees the existence of a pure
strategy equilibrium under the conditions that the strategy sets are compact, contestant i’s payoff function is qua-
siconcave in si, and the game is better-reply secure. The first condition is readily taken care of by, without loss of
generality, imposing a constraint si ≤ s, where s is some finite and sufficiently large constant; this ensures that each

player’s strategy set [0, s]
def= S is closed and bounded and thus compact. The requirement that the payoff functions

are quasiconcave will be investigated at the end of this proof. To show that the game is better-reply secure, we can
rely on Proposition 1 in Bagh and Jofre (2006). This says that a game is better-reply secure if it is payoff secure and
weakly reciprocal upper semicontinuous (wrusc).26 We know that, in the hybrid contest, each player’s payoff function
is continuous everywhere, except possibly at the origin. This means that the potentially problematic issue with
showing the two properties is what happens at the point s = 0.

In order to prove that the game is payoff secure at s = 0, we must show that each player can, for every ε > 0,
secure a payoff of pi (0) vi − ε at s = 0. A player is said to be able to secure a payoff of pi (0) vi − ε at s = 0 if there
exists s̃i such that πi

(
s̃i, s′−i

)
≥ pi (0) vi − ε for all s′−i in some open neighborhood of 0−i. The hybrid contest is

indeed payoff secure at s = 0. To see this, note that there exists s̃i > 0 such that

πi (s̃i, 0−i) = pi (s̃i, 0−i) vi − C [s̃i, pi (s̃i, 0−i)] = vi − C [s̃i, 1] > pi (0) vi. (A1)

The second equality in (A1) follows from the assumption that, for any s̃i > 0, pi (s̃i, 0−i) = 1; the inequality in
(A1) follows from (i) the assumption that pi (0) < 1 and (ii) the fact that C [s̃i, 1] can be made arbitrarily small by
choosing a s̃i close enough to zero. Moreover, πi is continuous at (s̃i, 0−i). Therefore, (A1) implies that for every
ε > 0 and for all s′−i in some open neighborhood of 0−i, we have πi

(
s̃i, s′−i

)
≥ pi (0) vi − ε.

The graph of the game is defined as Γ = {(s, π1, ∙ ∙ ∙ , πn) ∈ Sn ×<n | πi (s) = πi, ∀i}. The closure of Γ is de-
noted by Γ. The frontier of Γ, denoted by Fr Γ, is defined as the set of points that are in Γ but not in Γ. In order to
prove that the game is wrusc, we must show that for any (s, β1, . . . , βn) in the frontier of the game, there is a player
i and s̃i such that πi

(
s̃i, s′−i

)
> βi. The game is indeed wrusc. To verify this, first note that, since the origin is the

only point of discontinuity, any point in Fr Γ must be of the form (0, γ1v1, ∙ ∙ ∙ , γnvn), where for some sτ → 0 and
every i, we have limτ→∞ πi (sτ) = γivi. We must also have ∑n

i=1 γi = 1. Hence, for some i, γi < 1. Suppose, without
loss of generality, that γ1 < 1. Because lims1→0 πi (s1, 0−1) = v1, there exists s̃i > 0 such that πi (s̃i, 0−1) > γ1v1.

To prove the proposition, it remains to show that, under the conditions stated there, player i’s payoff function

is quasiconcave in si. I will do this by showing that ∂2πi
∂s2

i
< 0 at any point where ∂πi

∂si
= 0. From the analysis in

the main text, it follows that we can write the derivative of contestant i’s payoff function with respect to si as
∂πi
∂si

= [vi − Y (si, pi (s))] ∂pi
∂si

− C1 (si, pi). Differentiating again yields

∂2πi

∂s2
i

= −
[

Y1 (si, pi) + Y2 (si, pi)
∂pi

∂si

]
∂pi

∂si
+ [vi − Y (si, pi)]

∂2 pi

∂s2
i

− C11 (si, pi) − C12 (si, pi)
∂pi

∂si
.

Now note that C12 (si, pi) = C21 (si, pi) = Y1 (si, pi). For a value of si for which ∂πi
∂si

= 0 holds, we also have

vi − Y (si, pi) = C1(si ,pi)
∂pi/∂si

. Moreover, C1 (si, pi) =
[

pi + h
(

1
pi

)]
Y1 (si, pi) and

C11 (si, pi) =
[

pi + h

(
1
pi

)]

Y11 (si, pi) =
1 − t

tsi

[

pi + h

(
1
pi

)]

Y1 (si, pi)

26The proof below that the hybrid contest has those two properties will follow the proof in Example 3 of Bagh
and Jofre (2006) fairly closely.
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(cf. (6) and (8)). Therefore, evaluated at a value of si where ∂πi
∂si

= 0, the second-derivative can be written

∂2πi

∂s2
i

| ∂πi
∂si

=0
= −

[

2Y1 (si, pi) + Y2 (si, pi)
∂pi

∂si

]
∂pi

∂si
+

[
∂2 pi/∂s2

i
∂pi/∂si

−
1 − t

tsi

] [

pi + h

(
1
pi

)]

Y1 (si, pi) . (A2)

The expression in (A2) is strictly negative if and only if

[

2
Y1 (si, pi) si

Y (si, pi)
+

Y2 (si, pi) pi

Y (si, pi)
∂pi

∂si

si

pi

]
∂pi

∂si
>

[
∂2 pi/∂s2

i
∂pi/∂si

−
1 − t

tsi

] [

pi + h

(
1
pi

)]
Y1 (si, pi) si

Y (si, pi)
. (A3)

Now note that Y1(si ,pi)si

Y(si ,pi)
= 1

t and

Y2 (si, pi) pi

Y (si, pi)
= −

1
t

(si)
1
t

[

f

(

h

(
1
pi

)

, 1

)]− 1
t −1

f1

[

h

(
1
pi

)

, 1

]

h′
(

1
pi

)(
−1

p2
i

)

× pi

[
si

f (h (1/pi) , 1)

]− 1
t

=
1
t

f1

[
h
(

1
pi

)
, 1
]

h
(

1
pi

)

f
(

h
(

1
pi

)
, 1
) ×

h′
(

1
pi

)
1
pi

h
(

1
pi

) = −
η
(

1
pi

)
σ
(

1
pi

)

t
.

Inequality (A3) can therefore be written as



2
t
−

η
(

1
pi

)
σ
(

1
pi

)
εi (s)

t



 ∂pi

∂si
>

[
∂2 pi/∂s2

i
∂pi/∂si

−
1 − t

tsi

]

[pi + h (1/pi)]
1
t

or, equivalently, as

η

(
1
pi

)

σ

(
1
pi

)

εi (s) < 2 −

[
∂2 pi/∂s2

i
∂pi/∂si

−
1 − t

tsi

] [
pi + h

(
1
pi

)]

∂pi/∂si
. (A4)

The last term in the above inequality is strictly negative for all t ≤ 1. Therefore, a sufficient condition for (A4) to hold

is that η
(

1
pi

)
σ
(

1
pi

)
εi (s) ≤ 2. This proves the claim for part (i) of Assumption 1. In order to prove the claim for

part (ii), note that the derivative of the CSF in (9) can be written as ∂pi
∂si

= rpi (1 − pi) /si, and the second-derivative

is given by ∂2 pi

∂s2
i

= rpi (1 − pi) [r (1 − 2pi) − 1] /s2
i . Thus, the term in square brackets in (A4) becomes

∂2 pi/∂s2
i

∂pi/∂si
−

1 − t
tsi

=
r (1 − 2pi) − 1

si
−

1 − t
tsi

=
tr (1 − 2pi) − 1

tsi
,

which is non-positive for all pi if tr ≤ 1. Moreover, εi (s) = r(1 − pi) ≤ r. Hence the result follows. Finally consider
part (iii). The additional Cobb-Douglas assumption means that we can write the last term in (A4) as

[
∂2 pi/∂s2

i
∂pi/∂si

−
1 − t

tsi

] 


pi + h

(
1
pi

)

∂pi/∂si



 =
[

tr (1 − 2pi) − 1
tsi

] [ pi + α
β pi

rpi (1 − pi) /si

]

=
tr (1 − 2pi) − 1

rβ (1 − pi)
.

Moreover, the left-hand side of (A4) simplifies to η
(

1
pi

)
σ
(

1
pi

)
εi (s) = αr (1 − pi). Inequality (A4) therefore be-

comes

αr (1 − pi) < 2 −
tr (1 − 2pi) − 1

rβ (1 − pi)
⇔ αβr2 (1 − pi)

2 < 2rβ (1 − pi) − tr (1 − 2pi) + 1.

This inequality is most stringent at pi = 0 (and it is strictly less stringent for higher values of pi). It therefore suffices
if the inequality holds weakly when evaluated at pi = 0:

αβr2 ≤ 2rβ − tr + 1 = rβ − αr + 1 ⇔ 0 ≤ rβ(1 − αr) + 1 − αr ⇔ αr ≤ 1,

which gives us the result.

Proof of Proposition 2

First consider the claim in the last sentence of the proposition. To verify that s = 0 cannot be a Nash equilibrium,
note that πi (0) = pi (0) vi < vi. Moreover, by assumption we have pi (si, 0−i) = 1 for any si > 0. Therefore, if
contestant i were to deviate from si = 0 to some si > 0, her payoff would equal πi (si, 0−i) = vi − C [si, 1]. But
C [si, 1] can be made arbitrarily small by choosing an si close enough to zero and, hence, for such an si the deviation
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is profitable.
We can thus conclude that in any equilibrium, s 6= 0. Moreover, we know that each contestant’s payoff function

is continuous and differentiable for all s 6= 0. In addition, Assumption 1 takes care of the second-order condition.
It follows that the analysis in the text that precedes the first-order condition (10) is valid and that this first-order
condition indeed characterizes the equilibria of the model.

Proof of Proposition 3

Under symmetry, the expression in (5) can be written as x∗ = h (n) y∗. Plugging this into (11) and then solving for y∗

yields (12). The solution to this linear equation system is unique, and so the model has a unique equilibrium within
the family of symmetric equilibria. The expression for s∗ is obtained by plugging h (1/pi) = h (n) and yi = y∗ into
the equality si = yt

i f [h (1/pi) , 1], which was derived in footnote 13.

Proof of Proposition 4

The claims about v, t, and α are straightforward to verify, so the calculations are omitted. Consider the condition for
y∗ to be strictly increasing in n. Differentiating the expression for y∗ in (12), we have

∂y∗

∂n
=

ε̂ ′ (n) [1 + nh (n) + tε̂ (n)] − ε̂ (n) [h (n) + nh′ (n) + tε̂ ′ (n)]

(tv)−1 [1 + nh (n) + tε̂ (n)]2
> 0 ⇔ ε̂ ′ (n) [1 + nh (n)] > ε̂ (n)

[
h (n) + nh′ (n)

]
.

Differentiating (14), we obtain ε̂ ′ (n) = r/n2. Using this and (14) in the second inequality above yields 1 + nh (n) >

n (n − 1) [h (n) + nh′ (n)] = n (n − 1) h (n) [1 − σ (n)], which simplifies to the condition in (16). Next consider to the
condition for x∗ to be strictly decreasing in n. We have x∗ = h (n) y∗, where y∗ is given by (12). Differentiating yields

∂x∗

∂n
=

[ε̂ ′ (n) h (n) + ε̂ (n) h′ (n)] [1 + nh (n) + tε̂ (n)] − ε̂ (n) h (n) [h (n) + nh′ (n) + tε̂ ′ (n)]

(tv)−1 [1 + nh (n) + tε̂ (n)]2
< 0 ⇔

[
ε̂ ′ (n) h (n) + ε̂ (n) h′ (n)

]
[1 + nh (n)] + t [ε̂ (n)]2 h′ (n) < ε̂ (n) h (n)

[
h (n) + nh′ (n)

]
.

Dividing through by ε̂ (n) and using ε̂ ′ (n) /ε̂ (n) = 1/ [n (n − 1)], the inequality simplifies to

[
h (n)

n (n − 1)
+ h′ (n)

]

[1 + nh (n)] + tε̂ (n) h′ (n) < h (n)
[
h (n) + nh′ (n)

]

or, equivalently, h (n) [1 − (n − 1) σ (n)] [1 + nh (n)]− tε̂ (n) (n − 1) h (n) σ (n) < n (n − 1) [h (n)]2 [1 − σ (n)], which
simplifies to the condition in (16). Finally consider the claim that σ (n) ≥ 1 is sufficient for both conditions in (16) to

hold. Substituting n−2
n−1 (which is smaller than unity) for σ (n) in the condition for ∂y∗

∂n in (16) yields

n − 2
n − 1

>
n (n − 2) h (n) − 1

n (n − 1) h (n)
⇔ (n − 2) nh (n) > n (n − 2) h (n) − 1 ⇔ 1 > 0,

which always holds. And substituting 1 for σ (n) in the condition for ∂x∗

∂n in (16) yields

1 > −
n (n − 2) h (n) − 1
(n − 1) [1 + tε̂ (n)]

⇔ (n − 1) [1 + tε̂ (n)] > −n (n − 2) h (n) + 1 ⇔ n − 2 + tε̂ (n) (n − 1) > −n (n − 2) h(n),

which again always holds.

Proof of Proposition 5

The first equality in (19) follows immediately from (11) and (18), since nC
[
s∗, 1

n

]
= y∗ + nx∗. To verify the second

equality, note that

(

1 −
y∗

v

)

RA =

(

1 −
RA/v

1 + nh(n) + RA/v

)

RA =
RA [1 + nh (n)] v

[1 + nh (n)] v + RA
=
[

1
[1 + nh (n)] v

+
1

RA

]−1

,

where the first equality uses (12) and (18). The claim that RH < RA follows immediately from (19) and y∗ > 0. The
claims about v, t, and α are straightforward to verify, so the calculations are omitted. Consider the condition for RH
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to be weakly increasing in n. By differentiating the right-most expression for RH in (19), we have

∂RH

∂n
= −

[
1

v [1 + nh (n)]
+

1
RA

]−2
[

−
h (n) + nh′ (n)

v [1 + nh (n)]2
−

∂RA/∂n
(

RA
)2

]

≥ 0 ⇔
∂RA/∂n
(

RA
)2 ≥ −

h (n) [1 − σ (n)]

v [1 + nh (n)]2
.

By differentiating the expression in (18) (also using (14)), we obtain ∂RA/∂n = tvr/n2. By plugging this and the
expression for RA in (18) (combined with (14)) into the above inequality and then rewriting, we have

rt (n − 1)2 [σ (n) − 1] h (n) ≤ [1 + nh (n)]2 = 1 + 2nh (n) + n2h (n)2 ⇔ h (n)2 − Kh (n) ≥ −
1

n2 , (A5)

where K is defined in Proposition 5. Since h (n) > 0, this inequality always holds if K ≤ 0. Suppose K > 0. Then
the left-hand side is negative for all h (n) < K, and it is minimized at h (n) = K/2. Evaluating inequality (A5) at
h (n) = K/2 yields

−
K2

4
≥ −

1
n2 ⇔ K ≤

2
n
⇔ σ (n) ≤ 1 +

4n

tr (n − 1)2 . (A6)

Thus if (A6) holds, then (A5) is always satisfied. If (A6) is violated, then also (A5) is violated for values of h (n)
between the two roots of (A5). Solving for these roots (by completing the square), we have:

h (n)2 − Kh (n) = −
1

n2 ⇔
[

h (n) −
K
2

]2

=
n2K2

4n2 −
4

4n2 ⇔ h (n) =
K
2
±

1
2n

√
n2K2 − 4.

Thus, total expenditures are increasing in n if and only if (i) inequality (A6) holds or (ii) inequality (A6) is violated
and h (n) /∈ (ΞL, ΞH), where ΞL and ΞH are defined in Proposition 5.

Proof of Proposition 7

The first-order condition in (10) can be written as

(vi − y∗i )
rp∗i

(
1 − p∗i

)

s∗i
=

1
ts∗i

C (s∗i , p∗i ) ⇔ rt (vi − y∗i ) p∗i (1 − p∗i ) =
[

p∗i + h

(
1
p∗i

)]

y∗i , (A7)

where the relationships C1
(
s∗i , p∗i

)
= 1

ts∗i
C
(
s∗i , p∗i

)
and C

(
s∗i , p∗i

)
=
[

p∗i + h
(

1
p∗i

)]
y∗i were used. By solving (A7) for

y∗i , we obtain (23). The remaining parts of the characterization claim are either shown in the main text or straight-
forward. It remains to prove the uniqueness claim. Note that the equilibrium is defined recursively: The only en-
dogenous variable in the equality Υ (p1) = 0 is p1; moreover, given a value of p∗1, the winner-pay investments y∗1
and y∗2 are uniquely determined by (23). To prove the claim, it thus suffices to show that if rη

(
1
pi

)
σ
(

1
pi

)
≤ 1 for

all pi ∈ [0, 1], then the equation Υ (p1) = 0 has a unique root. A sufficient condition for this, in turn, is that Υ (p1) is
strictly increasing (by Proposition 1, we know that the equation has at least one root). The equation Υ (p1) = 0 can
equivalently be written as Υ̂ (p1) = 0, where

Υ̂ (p1) = ln

[
w2vrt

2

w1vrt
1

]

+ ln p1 + r ln f

[

h

(
1

1 − p1

)

, 1

]

+ rt ln

[

rtp1 (1 − p1) + p1 + h

(
1
p1

)]

− ln (1 − p1) − r ln f

[

h

(
1
p1

)

, 1

]

− rt ln

[

rtp1 (1 − p1) + 1 − p1 + h

(
1

1 − p1

)]

.
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Differentiating with respect to p1 yields

Υ̂′ (p1) =
1
p1

+
r f1

[
h
(

1
1−p1

)
, 1
]

h′
(

1
1−p1

)
1

(1−p1)
2

f
[

h
(

1
1−p1

)
, 1
] +

rt
[
rt (1 − 2p1) + 1 − h′

(
1
p1

)
1
p2

1

]

rtp1 (1 − p1) + p1 + h
(

1
p1

)

+
1

1 − p1
+

r f1

[
h
(

1
p1

)
, 1
]

h′
(

1
p1

)
1
p2

1

f
[

h
(

1
p1

)
, 1
] −

rt

[

rt (1 − 2p1) − 1 + h′
(

1
1−p1

)
1

(1−p1)
2

]

rtp1 (1 − p1) + 1 − p1 + h
(

1
1−p1

)

=
1

p1 (1 − p1)
−

rη
(

1
1−p1

)
σ
(

1
1−p1

)

1 − p1
−

rη
(

1
p1

)
σ
(

1
p1

)

p1

+
rt
[
rt (1 − 2p1) + 1 − h′

(
1
p1

)
1
p2

1

]

rtp1 (1 − p1) + p1 + h
(

1
p1

) −
rt

[

rt (1 − 2p1) − 1 + h′
(

1
1−p1

)
1

(1−p1)
2

]

rtp1 (1 − p1) + 1 − p1 + h
(

1
1−p1

) . (A8)

Under the assumption that rη
(

1
pi

)
σ
(

1
pi

)
≤ 1 for all pi, the first line of (A8) is non-negative. The second line of

(A8) is strictly positive if

rt [rt (1 − 2p1)]

rtp1 (1 − p1) + p1 + h
(

1
p1

) −
rt [rt (1 − 2p1)]

rtp1 (1 − p1) + 1 − p1 + h
(

1
1−p1

) ≥ 0 ⇔

(1 − 2p1)
[

1 − p1 + h

(
1

1 − p1

)

− p1 − h

(
1
p1

)]

= (1 − 2p1)
2 + (1 − 2p1)

∫ 1
1−p1

1
p1

h′ (z) dz ≥ 0.

But, since h′ < 0, the last inequality holds for all p1 ∈ [0, 1] (with equality if, and only if, p1 = 0.5).

Proof of Proposition 8

Under the assumption that v1 = v2, (A7) simplifies to rt
(
v − y∗i

)
p∗i
(
1 − p∗i

)
=
[

p∗i + h
(

1
p∗i

)]
y∗i . Since the expres-

sion in square brackets is strictly increasing in p∗i and since p∗1
(
1 − p∗1) = p∗2

(
1 − p∗2) , the equality implies that

p∗1 > p∗2 ⇔ y∗1 < y∗2. Moreover, since
[

p∗i + h
(

1
p∗i

)]
y∗i = C

(
s∗i , p∗i

)
, it also implies that y∗1 < y∗2 ⇔ C

(
s∗1, p∗1

)
>

C
(
s∗2, p∗2

)
. This proves part (i). Next turn to part (ii). By taking logs of the three equations (23) and Υ(p∗1) = 0, we

have

ln r + ln t + ln (v1 − y∗1) + ln p∗1 + ln (1 − p∗1) = ln

[

p∗1 + h

(
1
p∗1

)]

+ ln y∗1, (A9)

ln r + ln t + ln (v2 − y∗2) + ln p∗1 + ln (1 − p∗1) = ln

[

1 − p∗1 + h

(
1

1 − p∗1

)]

+ ln y∗2, (A10)

ln p∗1 + ln w2 + r ln f

[

h

(
1

1 − p∗1

)

, 1

]

+ rt ln y∗2 = ln (1 − p∗1) + ln w1 + r ln f

[

h

(
1
p∗1

)

, 1

]

+ rt ln y∗1. (A11)

Now set v1 = v2 = v in (A9) and (A10). Then differentiate (A9) with respect to w1:

−
1

v − y∗1

∂y∗1
∂w1

+
[

1
p∗1

−
1

1 − p∗1

]
∂p∗1
∂w1

=
1 − h′

(
1
p∗1

)
1

(p∗1)
2

p∗1 + h
(

1
p∗1

)
∂p∗1
∂w1

+
1
y∗1

∂y∗1
∂w1

⇔

[
1 − 2p∗1

p∗1
(
1 − p∗1

)

]
∂p∗1
∂w1

=
1
p∗1

[
p∗1 + σ

(
1
p∗1

)
h
(

1
p∗1

)]

p∗1 + h
(

1
p∗1

)
∂p∗1
∂w1

+
v

y∗1
(
v − y∗1

)
∂y∗1
∂w1

⇔

[
1 − 2p∗1
1 − p∗1

]
∂p∗1
∂w1

w1

p∗1
=

p∗1 + σ
(

1
p∗1

)
h
(

1
p∗1

)

p∗1 + h
(

1
p∗1

)
∂p∗1
∂w1

w1

p∗1
+

v
v − y∗1

∂y∗1
∂w1

w1

y∗1
⇔

[
1 − 2p∗1 − A1

(
1 − p∗1

)

1 − p∗1

]
∂p∗1
∂w1

w1

p∗1
=

v
v − y∗1

∂y∗1
∂w1

w1

y∗1
, (A12)
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where A1
def=
[

p∗1 + σ
(

1
p∗1

)
h
(

1
p∗1

)]
/
[

p∗1 + h
(

1
p∗1

)]
. Similarly, by differentiating (A10) with respect to w1 and then

rewriting, we obtain the following equality (the derivation is very similar to the one above):

[
1 − 2p∗1 + A2 p∗1

1 − p∗1

]
∂p∗1
∂w1

w1

p∗1
=

v
v − y∗2

∂y∗2
∂w1

w1

y∗2
, (A13)

where A2
def=
[
1 − p∗1 + σ

(
1

1−p∗1

)
h
(

1
1−p∗1

)]
/
[
1 − p∗1 + h

(
1

1−p∗1

)]
. Finally differentiate (A11) with respect to w1:

1
p∗1

∂p∗1
∂w1

+
r f1

[
h
(

1
1−p∗1

)
, 1
]

h′
(

1
1−p∗1

)
1

(1−p∗1)
2

f
[

h
(

1
1−p∗1

)
, 1
]

∂p∗1
∂w1

+ rt
1
y∗2

∂y∗2
∂w1

= −
1

1 − p∗1

∂p∗1
∂w1

+
1

w1
−

r f1

[
h
(

1
p∗1

)
, 1
]

h′
(

1
p∗1

)
1

(p∗1)
2

f
[

h
(

1
p∗1

)
, 1
]

∂p∗1
∂w1

+ rt
1
y∗1

∂y∗1
∂w1

⇔

1

p∗1
(
1 − p∗1

)
∂p∗1
∂w1

−
rη
(

1
1−p∗1

)
σ
(

1
1−p∗1

)

1 − p∗1

∂p∗1
∂w1

+ rt
1
y∗2

∂y∗2
∂w1

=
1

w1
+

rη
(

1
p∗1

)
σ
(

1
p∗1

)

p∗1

∂p∗1
∂w1

+ rt
1
y∗1

∂y∗1
∂w1

⇔




1 − rη

(
1

1−p∗1

)
σ
(

1
1−p∗1

)
p∗1 − rη

(
1
p∗1

)
σ
(

1
p∗1

) (
1 − p∗1

)

p∗1
(
1 − p∗1

)



 ∂p∗1
∂w1

+ rt
1
y∗2

∂y∗2
∂w1

=
1

w1
+ rt

1
y∗1

∂y∗1
∂w1

⇔

1 − B
1 − p∗1

∂p∗1
∂w1

w1

p∗1
+ rt

∂y∗2
∂w1

w1

y∗2
= 1 + rt

∂y∗1
∂w1

w1

y∗1
, where B

def= rη

(
1

1 − p∗1

)

σ

(
1

1 − p∗1

)

p∗1 + rη

(
1
p∗1

)

σ

(
1
p∗1

)

(1 − p∗1) .

(A14)
Now evaluate the three equations (A12)-(A14) above at w1 = w2 (all expressions below, until the end of the proof,
are evaluated at symmetry, even though this is not everywhere explicitly indicated):

−A
∂p∗1
∂w1

w1

p∗1
=

v
v − y∗

∂y∗1
∂w1

w1

y∗
, A

∂p∗1
∂w1

w1

p∗1
=

v
v − y∗

∂y∗2
∂w1

w1

y∗
, 2 (1 − B)

∂p∗1
∂w1

w1

p∗1
+ rt

∂y∗2
∂w1

w1

y∗
= 1 + rt

∂y∗1
∂w1

w1

y∗
,

where A
def= [1 + 2σ (2) h (2)] / [1 + 2h (2)], B

def= rη (2) σ (2), and y∗ is the common value of y∗1 and y∗2 when evalu-
ated at symmetry. Solving this equation system yields

∂p∗1
∂w1

w1

p∗1
=

1

2
[
1 − B + rtA v−y∗

v

] ,
∂y∗1
∂w1

w1

y∗
= −

A v−y∗

v

2
[
1 − B + rtA v−y∗

v

] ,
∂y∗2
∂w1

w1

y∗
=

A v−y∗

v

2
[
1 − B + rtA v−y∗

v

] . (A15)

From these results, most of the comparative statics claims follow. To prove the only remaining claim, the one about

the all-pay investments, note that the relationship x∗1 = h
(

1
p∗1

)
y∗1 implies that (at symmetry)

∂x∗1
∂w1

w1

x∗
= σ (2)

∂p∗1
∂w1

w1

p∗1
+

∂y∗1
∂w1

w1

y∗
=

σ (2) − A v−y∗

v

2
[
1 − B + rtA v−y∗

v

] , (A16)

where x∗ is the common value of x∗1 and x∗2 when evaluated at symmetry. Thus,

∂x∗1
∂w1

> 0 ⇔ σ (2) > A
v − y∗

v
=

1 + 2σ (2) h (2)
1 + 2h(2) + tr

2

⇔ σ (2) >
1

1 + tr
2

=
2

2 + tr
,

where the first equality is obtained by using (23). Similarly, from the relationship x∗2 = h
(

1
1−p∗1

)
y∗2 we have (at

symmetry)

∂x∗2
∂w1

w1

x∗
= −σ (2)

∂p∗1
∂w1

w1

p∗1
+

∂y∗2
∂w1

w1

y∗
=

−σ (2) + A v−y∗

v

2
[
1 − B + rtA v−y∗

v

] , (A17)

which has the opposite sign to (A16).

Proof of Proposition 9

Equation (A7) can be restated as rt
(
vi − y∗i

)
p∗i
(
1 − p∗i

)
= C

(
s∗i , p∗i

)
. Since p∗1

(
1 − p∗1) = p∗2

(
1 − p∗2) , the equality

implies that v1 − y∗1 > v2 − y∗2 ⇔ C
(
s∗1, p∗1

)
> C

(
s∗2, p∗2

)
. We can also write (A7) as rt

(
vi
y∗i

− 1
)

p∗i
(
1 − p∗i

)
=
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p∗i + h
(

1
p∗i

)
. Since the right-hand side is strictly increasing in p∗i and since p∗1

(
1 − p∗1) = p∗2

(
1 − p∗2) , the equality

implies that p∗1 > p∗2 ⇔ y∗1
v1

<
y∗2
v2

.

Proof of Proposition 10

The Cobb-Douglas specification (Assumption 5) implies h (m) = α
β m−1. By using this in (23), we get

v1 − y∗1 =
v1

(
p1 + α

β p1

)

rtp1 (1 − p1) + p1 + α
β p1

=
v1

t
β

rt (1 − p1) + t
β

=
v1

rβ (1 − p1) + 1
, (A18)

v2 − y∗2 =
v2

[
1 − p1 + α

β (1 − p1)
]

rtp (1 − p1) + 1 − p1 + α
β (1 − p1)

=
v2

t
β

rtp1 + t
β

=
v2

rβp1 + 1
. (A19)

Moreover, it follows from (A7) that the expected total equilibrium expenditures can be written as RH = rtp1 (1 − p1)×[(
v1 − y∗1

)
+
(
v2 − y∗2

)]
. Plugging (A18) and (A19) into this expression yields the expression for RH stated in (24).

Next, taking logs of both sides of (24), we can write

ln RH = ln rt + ln p1 + ln (1 − p1) + ln {rβ [p1v1 + (1 − p1) v2] + v1 + v2}

− ln [rβ (1 − p1) + 1] − ln (rβp1 + 1)

Differentiating yields:

∂ ln RH

∂p1
=

1
p1

−
1

1 − p1
+

rβ (v1 − v2)
rβ [p1v1 + (1 − p1) v2] + v1 + v2

+
rβ

rβ (1 − p1) + 1
−

rβ

rβp1 + 1

=
1 − 2p1

p1 (1 − p1)
+

rβ (v1 − v2)
rβ [p1v1 + (1 − p1) v2] + v1 + v2

+
(rβ)2 (2p1 − 1)

(rβ)2 p1 (1 − p1) + rβ + 1

=
(1 − 2p1) (rβ + 1)

p1 (1 − p1)
[
(rβ)2 p1 (1 − p1) + rβ + 1

] +
rβ (v1 − v2)

rβ [p1v1 + (1 − p1) v2] + v1 + v2

def= z (p1) . (A20)

First consider the case v1 = v2. Then it is clear from inspection that (A20) is positive for p1 < 1
2 and negative for

p1 > 1
2 . Hence, p̂1 = 1

2 . Next consider the case v1 > v2. The derivative w.r.t. p1 of the first term in (A20) is strictly
negative:

∂T (p1)
∂p1

= (rβ + 1)
−2p1 (1 − p1)

[
(rβ)2 p1 (1 − p1) + rβ + 1

]
− (1 − 2p1)

2
[
2 (rβ)2 p1 (1 − p1) + rβ + 1

]

p2
1 (1 − p1)

2
[
(rβ)2 p1 (1 − p1) + rβ + 1

]2 < 0,

(A21)
where T is short-hand notation for the first term in (A20). Moreover, by inspection, the second term in (A20) is
strictly decreasing in p1. Therefore, ∂2 ln RH/∂p2

1 < 0. Moreover, evaluated at p1 = 1
2 , the expression in (A20) is

strictly positive, whereas it approaches −∞ as p1 → 1. It follows that p̂1 ∈
(

1
2 , 1
)

. In particular, for any v1 ≥ v2, p̂1

is characterized by z ( p̂1) = 0.
One can verify that z (p1) is strictly increasing in v1 and strictly decreasing in v2. Hence, ∂ p̂1/∂v1 > 0 and

∂ p̂1/∂v2 < 0 (the former result will also follow from computations shown below). In order to do comparative
statics w.r.t. rβ, differentiate the first term of z (p1) w.r.t. rβ:

(1 − 2p1)
p1 (1 − p1)

(rβ)2 p1 (1 − p1) + rβ + 1 − (rβ + 1) [2rβp1 (1 − p1) + 1]
[
(rβ)2 p1 (1 − p1) + rβ + 1

]2

=
− (1 − 2p1)
p1 (1 − p1)

p1 (1 − p1) rβ [2 (rβ + 1) − rβ]
[
(rβ)2 p1 (1 − p1) + rβ + 1

]2 = −
(1 − 2p1) rβ (rβ + 2)

[
(rβ)2 p1 (1 − p1) + rβ + 1

]2 .

Then differentiate the second term of z (p1) w.r.t. rβ:

(v1 − v2)
rβ [p1v1 + (1 − p1) v2] + v1 + v2 − rβ [p1v1 + (1 − p1) v2]

{rβ [p1v1 + (1 − p1) v2] + v1 + v2}
2 =

(v1 − v2) (v1 + v2)

{rβ [p1v1 + (1 − p1) v2] + v1 + v2}
2 .

Thus, if v1 = v2, thenz (p1) is constant w.r.t. rβ and ∂ p̂1/∂ (rβ) = 0. And if v1 > v2, thenz (p1) is strictly increasing
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in v1 and ∂ p̂1/∂ (rβ) > 0.
Given the Cobb-Douglas specification in Assumption 5, the equation Υ(p∗1) = 0, which defines the equilibrium

value of p1, becomes

w2vrt
2

w1vrt
1

p1

[(
α
β

)α
(1 − p1)

α
]r

[
rtp1 (1 − p1) + 1 − p1 + α

β (1 − p1)
]rt =

(1 − p1)
[(

α
β

)α
pα

1

]r

[
rtp1 (1 − p1) + p1 + α

β p1

]rt ⇔

w2vrt
2

w1vrt
1

p1 (1 − p1)
rα

(1 − p1)
rt
(

rtp1 + 1 + α
β

)rt =
prα

1 (1 − p1)

prt
1

[
rt (1 − p1) + 1 + α

β

]rt ⇔

w2vrt
2

w1vrt
1

p1+rβ
1

(
rtp1 + t

β

)rt =
(1 − p1)

1+rβ

[
rt (1 − p1) + t

β

]rt ⇔

w1 = w2

[
p1

1 − p1

]1+rβ
[

r (1 − p1) + 1
β

rp1 + 1
β

v2

v1

]rt

= w2

[
p1

1 − p1

]1+rβ [ rβ (1 − p1) + 1
rβp1 + 1

v2

v1

]rt

,

which gives us (25). The result that limv1→∞ p̂1 < 1 follows from inspection of (A20): z ( p̂1) = 0 is inconsistent
with limv1→∞ p̂1 = 1. Similarly, the result that limv1→∞ ŵ1 = 0 follows from (25) and the fact that limv1→∞ p̂1 < 1.

It remains to prove the last limit result stated in the proposition. In order to do that, we must first derive the
value of limv1→v2 ∂ p̂1/∂v1. To this end, differentiate both sides of z ( p̂1) = 0, to obtain:

∂T ( p̂1)
∂p1

∂ p̂1

∂v1
−

(rβ)2 (v1 − v2)
2

[rβ [ p̂1v1 + (1 − p̂1) v2] + v1 + v2]
2

∂ p̂1

∂v1
+

rβ {rβ [ p̂1v1 + (1 − p̂1) v2] + v1 + v2 − (v1 − v2) (rβ p̂1 + 1)}

[rβ [ p̂1v1 + (1 − p̂1) v2] + v1 + v2]
2 = 0.

(A22)
The numerator of the last term simplifies to rβ (rβ + 2) v2 > 0. Since we also know, from above, that ∂T ( p̂1) /∂p1 <

0, it follows that ∂ p̂1/∂v1 > 0. Next, take the limit v1 → v2 of both sides of (A22):
[

lim
v1→v2

∂T ( p̂1)
∂p1

] [

lim
v1→v2

∂ p̂1

∂v1

]

+
rβ (rβ + 2) v2

[rβv2 + v2 + v2]
2 = 0.

From (A21) we also have

lim
v1→v2

∂T ( p̂1)
∂p1

= (rβ + 1)
−8

[(
rβ
2

)2
+ rβ + 1

]

[(
rβ
2

)2
+ rβ + 1

]2 = −
8 (rβ + 1)

(
rβ
2

)2
+ rβ + 1

= −
32 (rβ + 1)

(rβ + 2)2 .

Thus, limv1→v2

∂ p̂1

∂v1
=
[

− rβ(rβ+2)v2

(rβ+2)2v2
2

]

/

[

− 32(rβ+1)
(rβ+2)2

]

= rβ(rβ+2)
32(rβ+1)v2

. We can now prove the last limit result stated in the

proposition. Take logs of (25) and evaluate at p = p̂1:

ln ŵ1 = ln w2 − (1 + rβ) ln (1 − p̂1) + (1 + rβ) ln p̂1 − rt ln (rβ p̂1 + 1) + rt ln [rβ (1 − p̂1) + 1] − rt ln v1 + rt ln v2.

Differentiate both sides w.r.t. v1:

1
ŵ1

∂ŵ1

∂v1
=

[
1 + rβ

1 − p̂1
+

1 + rβ

p̂1
−

tr2β

rβ p̂1 + 1
−

tr2β

rβ (1 − p̂1) + 1

]
∂ p̂1

∂v1
−

rt
v1

=
[

1 + rβ

(1 − p̂1) p̂1
−

tr2β (rβ + 2)
(rβ p̂1 + 1) [rβ (1 − p̂1) + 1]

]
∂ p̂1

∂v1
−

rt
v1

.

Next take the limit v1 → v2 of both sides:

lim
v1→v2

[
1

ŵ1

] [

lim
v1→v2

∂ŵ1

∂v1

]

=



4 (1 + rβ) −
tr2β (rβ + 2)

(
rβ
2 + 1

) (
rβ
2 + 1

)




[

lim
v1→v2

∂ p̂1

∂v1

]

−
rt
v2

⇔

1
w2

lim
v1→v2

∂ŵ1

∂v1
= 4

[

(1 + rβ) −
tr2β (rβ + 2)

(rβ + 2)2

]
rβ (rβ + 2)

32 (rβ + 1) v2
−

rt
v2

=
rβ (rβ + 2)

8v2
−

rt
v2

−
tr3β2

8 (rβ + 1) v2
=

rβ (rβ + 2)
8v2

−
rt
[
8 (rβ + 1) + (rβ)2

]

8 (rβ + 1) v2
.
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Thus,

lim
v1→v2

∂ŵ1

∂v1
< 0 ⇔

rβ (rβ + 2)
8v2

<
rt
[
8 (rβ + 1) + (rβ)2

]

8 (rβ + 1) v2
⇔

β

α + β
<

8 (rβ + 1) + (rβ)2

(rβ + 2) (rβ + 1)
=

5rβ + 6
(rβ + 2) (rβ + 1)

+ 1,

which always holds.
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